Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Malar J ; 18(1): 84, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885193

RESUMO

BACKGROUND: Current World Health Organization guidelines for conducting anti-malarial drug efficacy clinical trials recommend genotyping Plasmodium falciparum genes msp1 and msp2 to distinguish recrudescence from reinfection. A more recently developed potential alternative to this method is a molecular genotyping assay based on a panel of 24 single nucleotide polymorphism (SNP) markers. METHODS: Performance parameters of these two genotyping methods were compared using data from two recently completed drug efficacy trials. Blood samples from two anti-malarial therapeutic trials were analysed by both msp genotyping and the 24 SNP assay. Additionally, to conserve time and resources, the statistical program R was used to select the most informative SNPs for a set of unrelated Malawian samples to develop a truncated SNP-based assay for the region surrounding Blantyre, Malawi. The ability of this truncated assay to distinguish reinfection from recrudescence when compared to the full 24 SNP assay was then analysed using data from the therapeutic trials. RESULTS: A total of 360 samples were analysed; 66 for concordance of msp and SNP barcoding methodologies, and 294 for assessing the most informative of the 24 SNP markers. SNP genotyping performed comparably to msp genotyping, with only one case of disagreement among the 50 interpretable results, where the SNP assay identified the sample as reinfection and the msp typing as recrudescence. Furthermore, SNP typing was more robust; only 6% of samples were uninterpretable by SNP typing, compared to 19.7% when msp genotyping was used. For discriminating reinfection from recrudescence, a truncated 6 SNP assay was found to perform at 95.1% the accuracy of the full 24 SNP bar code. CONCLUSIONS: The use of SNP analysis has similar sensitivity to the standard msp genotyping in determining recrudescence from reinfection. Although more expensive, SNP typing is faster and less work intensive. Limiting the assay to those SNPs most informative in the geographical region of interest may further decrease the workload and the cost, making this technique a feasible and affordable alternative in drug efficacy trials.


Assuntos
Antígenos de Protozoários/genética , Técnicas de Genotipagem/métodos , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/classificação , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Genótipo , Humanos , Lactente , Malaui , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Recidiva , Sensibilidade e Especificidade , Fatores de Tempo
2.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25797165

RESUMO

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Hidantoínas/química , Hidantoínas/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Descoberta de Drogas , Humanos , Hidantoínas/metabolismo , Hidantoínas/farmacocinética , Malária Falciparum/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacocinética , Piperidinas/farmacologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Ratos , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Compostos de Espiro/farmacocinética , Compostos de Espiro/farmacologia
3.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798324

RESUMO

Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.

4.
J Med Chem ; 62(7): 3503-3512, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30856324

RESUMO

Identification of novel chemotypes with antimalarial efficacy is imperative to combat the rise of Plasmodium species resistant to current antimalarial drugs. We have used a hybrid target-phenotype approach to identify and evaluate novel chemotypes for malaria. In our search for drug-like aspartic protease inhibitors in publicly available phenotypic antimalarial databases, we identified GNF-Pf-4691, a 4-aryl- N-benzylpyrrolidine-3-carboxamide, as having a structure reminiscent of known inhibitors of aspartic proteases. Extensive profiling of the two terminal aryl rings revealed a structure-activity relationship in which relatively few substituents are tolerated at the benzylic position, but the 3-aryl position tolerates a range of hydrophobic groups and some heterocycles. Out of this effort, we identified (+)-54b (CWHM-1008) as a lead compound. 54b has EC50 values of 46 and 21 nM against drug-sensitive Plasmodium falciparum 3D7 and drug-resistant Dd2 strains, respectively. Furthermore, 54b has a long half-life in mice (4.4 h) and is orally efficacious in a mouse model of malaria (qd; ED99 ∼ 30 mg/kg/day). Thus, the 4-aryl- N-benzylpyrrolidine-3-carboxamide chemotype is a promising novel chemotype for malaria drug discovery.


Assuntos
Antimaláricos/farmacologia , Pirrolidinas/farmacologia , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Disponibilidade Biológica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Malária/tratamento farmacológico , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Pirrolidinas/administração & dosagem , Pirrolidinas/química , Relação Estrutura-Atividade
5.
Am J Vet Res ; 77(7): 708-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347823

RESUMO

OBJECTIVE To compare the effects of equivalent volumes of equine plasma and 6% hydroxyethyl starch (600/0.75) solution (hetastarch) administered IV on plasma colloid osmotic pressure (pCOP) and commonly monitored clinicopathologic variables in horses. ANIMALS 6 healthy mares. PROCEDURES In a randomized, crossover study, horses were administered hetastarch or plasma (both 10 mL/kg, IV) 18 months apart. The pCOP and variables of interest were measured before (baseline), immediately after, and at intervals up to 96 or 120 hours after infusion. Prothrombin and activated partial thromboplastin times were measured before and at 2 and 8 hours after each infusion. RESULTS Prior to hetastarch and plasma infusions, mean ± SEM pCOP was 19.4 ± 0.5 mm Hg and 19.4 ± 0.8 mm Hg, respectively. In general, hetastarch and plasma infusions comparably increased pCOP from baseline for 48 hours, with maximum increases of 2.0 and 2.3 mm Hg, respectively. Mean Hct and hemoglobin, total protein, and albumin concentrations were decreased for a period of 72, 96, or 120 hours after hetastarch infusion with maximum decrements of 8.8%, 3.2 g/dL, 1.2 g/dL, and 0.6 g/dL, respectively. Plasma infusion decreased (albeit not always significantly) hemoglobin concentration and Hct for 20 and 24 hours (maximum changes of 1.5 g/dL and 6.6%, respectively) and increased total solids concentration (maximum change of 0.6 g/dL) for 48 hours. Platelet count and coagulation times were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE Overall, the hetastarch and plasma infusions comparably increased pCOP in healthy horses for up to 48 hours. Hetastarch induced greater, more persistent perturbations in clinicopathologic variables.


Assuntos
Cavalos/fisiologia , Derivados de Hidroxietil Amido/farmacologia , Pressão Osmótica/efeitos dos fármacos , Substitutos do Plasma/farmacologia , Animais , Testes de Coagulação Sanguínea , Coloides , Estudos Cross-Over , Feminino , Hemoglobinas , Tempo de Tromboplastina Parcial/veterinária , Plasma , Contagem de Plaquetas/veterinária , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa