Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 103(6): 100104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36867975

RESUMO

The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.


Assuntos
Imageamento Tridimensional , Rim , Humanos , Rim/diagnóstico por imagem , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Aprendizado de Máquina
2.
J Chem Inf Model ; 63(21): 6598-6607, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903507

RESUMO

Conformer generation, the assignment of realistic 3D coordinates to a small molecule, is fundamental to structure-based drug design. Conformational ensembles are required for rigid-body matching algorithms, such as shape-based or pharmacophore approaches, and even methods that treat the ligand flexibly, such as docking, are dependent on the quality of the provided conformations due to not sampling all degrees of freedom (e.g., only sampling torsions). Here, we empirically elucidate some general principles about the size, diversity, and quality of the conformational ensembles needed to get the best performance in common structure-based drug discovery tasks. In many cases, our findings may parallel "common knowledge" well-known to practitioners of the field. Nonetheless, we feel that it is valuable to quantify these conformational effects while reproducing and expanding upon previous studies. Specifically, we investigate the performance of a state-of-the-art generative deep learning approach versus a more classical geometry-based approach, the effect of energy minimization as a postprocessing step, the effect of ensemble size (maximum number of conformers), and construction (filtering by root-mean-square deviation for diversity) and how these choices influence the ability to recapitulate bioactive conformations and perform pharmacophore screening and molecular docking.


Assuntos
Algoritmos , Desenho de Fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Molecular , Ligantes
3.
J Comput Aided Mol Des ; 38(1): 3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062207

RESUMO

Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance at www.github.com/drewnutt/open_combind .


Assuntos
Desenho de Fármacos , Proteínas , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes , Proteínas/química , Sítios de Ligação
4.
J Chem Inf Model ; 62(8): 1819-1829, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35380443

RESUMO

The lead optimization phase of drug discovery refines an initial hit molecule for desired properties, especially potency. Synthesis and experimental testing of the small perturbations during this refinement can be quite costly and time-consuming. Relative binding free energy (RBFE, also referred to as ΔΔG) methods allow the estimation of binding free energy changes after small changes to a ligand scaffold. Here, we propose and evaluate a Siamese convolutional neural network (CNN) for the prediction of RBFE between two bound ligands. We show that our multitask loss is able to improve on a previous state-of-the-art Siamese network for RBFE prediction via increased regularization of the latent space. The Siamese network architecture is well suited to the prediction of RBFE in comparison to a standard CNN trained on the same data (Pearson's R of 0.553 and 0.5, respectively). When evaluated on a left-out protein family, our Siamese CNN shows variability in its RBFE predictive performance depending on the protein family being evaluated (Pearson's R ranging from -0.44 to 0.97). RBFE prediction performance can be improved during generalization by injecting only a few examples (few-shot learning) from the evaluation data set during model training.


Assuntos
Redes Neurais de Computação , Proteínas , Descoberta de Drogas , Entropia , Ligantes , Proteínas/química
5.
Cytometry A ; 99(7): 707-721, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33252180

RESUMO

To understand the physiology and pathology of disease, capturing the heterogeneity of cell types within their tissue environment is fundamental. In such an endeavor, the human kidney presents a formidable challenge because its complex organizational structure is tightly linked to key physiological functions. Advances in imaging-based cell classification may be limited by the need to incorporate specific markers that can link classification to function. Multiplex imaging can mitigate these limitations, but requires cumulative incorporation of markers, which may lead to tissue exhaustion. Furthermore, the application of such strategies in large scale 3-dimensional (3D) imaging is challenging. Here, we propose that 3D nuclear signatures from a DNA stain, DAPI, which could be incorporated in most experimental imaging, can be used for classifying cells in intact human kidney tissue. We developed an unsupervised approach that uses 3D tissue cytometry to generate a large training dataset of nuclei images (NephNuc), where each nucleus is associated with a cell type label. We then devised various supervised machine learning approaches for kidney cell classification and demonstrated that a deep learning approach outperforms classical machine learning or shape-based classifiers. Specifically, a custom 3D convolutional neural network (NephNet3D) trained on nuclei image volumes achieved a balanced accuracy of 80.26%. Importantly, integrating NephNet3D classification with tissue cytometry allowed in situ visualization of cell type classifications in kidney tissue. In conclusion, we present a tissue cytometry and deep learning approach for in situ classification of cell types in human kidney tissue using only a DNA stain. This methodology is generalizable to other tissues and has potential advantages on tissue economy and non-exhaustive classification of different cell types.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Rim , Coloração e Rotulagem , Aprendizado de Máquina Supervisionado
6.
J Cheminform ; 13(1): 43, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108002

RESUMO

Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2Å root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. GNINA, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of GNINA under an open source license for use as a molecular docking tool at https://github.com/gnina/gnina .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa