RESUMO
Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low collisionality, high confinement edge pedestals with their gradients limited by turbulent transport instead of large-scale, coherent instabilities. The exhaust heat flux profile width and divertor leg diffusive spreading both double as a high frequency band of turbulent fluctuations propagating in the electron diamagnetic direction doubles in amplitude. The results are quantitatively reproduced in electromagnetic XGC particle-in-cell simulations which show the heat flux carried by electrons emerges to broaden the heat flux profile, directly supported by Langmuir probe measurements.
RESUMO
The L-H transition power threshold (PLH) in favourable magnetic geometry (ion ∇B drift pointing towards X-point) is much lower than in the unfavourable magnetic geometry (ion ∇B drift pointing away from X-point) on multiple tokamaks. In a systematic experiment on DIII-D, the ion ∇B drift direction was changed continuously from the unfavourable to favourable configuration during plasma discharges. During such process, the input neutral beam power was kept constant at a value that was above PLH for favourable configuration, but lower than PLH for unfavourable configuration. Toroidal field and plasma current were also kept constant and there was little change in the edge electron density ne and electron temperature Te profiles. The density fluctuation amplitude was reduced approaching the transition, while a large increase of turbulence Reynolds stress and flow shear were simultaneously observed. The turbulence decorrelation rate was found to increase as the ion ∇B drift direction was moving towards the favourable configuration, but the flow shear also increased and exceeded the turbulence decorrelation rate. These measurements demonstrate an important correlation between turbulence and turbulence-driven flow and a lowering of PLH, provide insights into the underlyingphysics behind the hidden parameters and inform a more complete physics-based model of the L-H transition power threshold. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'.
RESUMO
Global gyrokinetic simulations of mesoscale reversed shear Alfven eigenmodes (RSAE) excited by energetic particles (EP) in fusion plasmas find that RSAE amplitude and EP transport are much higher than experimental levels at nonlinear saturation, but quickly diminish to very low levels after the saturation if background microturbulence is artificially suppressed. In contrast, in simulations coupling micro-meso scales, the RSAE amplitude and EP transport decrease drastically at the initial saturation but later increases to the experimental levels in the quasisteady state with bursty dynamics due to regulation by thermal ion temperature gradient (ITG) microturbulence. The quasisteady state EP transport is larger for a stronger microturbulence. The RSAE amplitude in the quasisteady state ITG-RSAE turbulence from gyrokinetic simulations, for the first time, agrees very well with experimental measurements.
RESUMO
Fast ion phase-space flow, driven by Alfvén eigenmodes (AEs), is measured by an imaging neutral particle analyzer in the DIII-D tokamak. The flow firstly appears near the minimum safety factor at the injection energy of neutral beams, and then moves radially inward and outward by gaining and losing energy, respectively. The flow trajectories in phase space align well with the intersection lines of the constant magnetic moment surfaces and constant E-(ω/n)P_{ζ} surfaces, where E, P_{ζ} are the energy and canonical toroidal momentum of ions; ω and n are angular frequencies and toroidal mode numbers of AEs. It is found that the flow is so destructive that the thermalization of fast ions is no longer observed in regions of strong interaction. The measured phase-space flow is consistent with nonlinear hybrid kinetic-magnetohydrodynamics simulation. Calculations of the relatively narrow phase-space islands reveal that fast ions must transition between different flow trajectories to experience large-scale phase-space transport.
RESUMO
High resolution luminosity product measurements of neutral beam emission in magnetized plasmas are severely limited by the artificial Doppler broadening inherent to the use of large diameter collection optics. In this paper, a broadening compensation method is developed for the spatial heterodyne spectroscopy interferometric technique. The compensation technique greatly reduces the artificial broadening, thereby enabling high resolution measurements at a significantly higher photon flux than previously available. Compensated and uncompensated measurements of emission generated by impact excitation of 61 keV deuterium neutrals in a tokamak plasma at the DIII-D National Fusion Facility are presented. The spectral width of the compensated measurement is ${\sim}0.13 \;{\rm{nm}}$, which is comparable to the instrument resolution. This width is ${\sim}4 \times$ smaller than the uncompensated width, which for the 20 cm diameter collection lens system utilized in this study is ${\sim}0.5 \;{\rm{nm}}$.
RESUMO
We observe the formation of a high-pressure staircase pedestal (≈16-20 kPa) in the DIII-D tokamak when large amplitude edge localized modes are suppressed using resonant magnetic perturbations. The staircase pedestal is characterized by a flattening of the density and temperature profiles in midpedestal creating a two-step staircase pedestal structure correlated with the appearance of midpedestal broadband fluctuations. The pedestal oscillates between the staircase and single-step structure every 40-60 ms, correlated with oscillations in the heat and particle flux to the divertor. Gyrokinetic analysis using the cgyro code shows that when the heat and particle flux to the divertor decreases, the pedestal broadens and the E×B shear at the midpedestal decreases, triggering a transport bifurcation from the kinetic ballooning mode (KBM) to trapped electron mode (TEM) limited transport that flattens the density and temperature profiles at midpedestal and results in the formation of the staircase pedestal. As the heat flux to the divertor increases, the pedestal narrows and the E×B shear at the midpedestal increases, triggering a back transition from TEM to KBM limited transport. The pedestal pressure increases during the staircase phase, indicating that enhanced midpedestal turbulence can be beneficial for confinement.
RESUMO
Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (ß_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a similar global performance as a positive triangularity (δ=+0.4) ELMing H-mode discharge with the same plasma current, elongation and cross sectional area. For cases both of dominant electron cyclotron heating with T_{e}/T_{i}>1 and dominant neutral beam injection heating with T_{e}/T_{i}=1, turbulent fluctuations over radii 0.5<ρ<0.9 were reduced by 10-50% in the negative triangularity shape compared to the matching positive triangularity shape, depending on the radius and conditions.
RESUMO
The hysteresis relation between turbulence and temperature modulation during the heat pulse propagation into a magnetic island is studied for the first time in toroidal plasmas. Lissajous curves of the density fluctuation (n[over Ë]/n) and the electron temperature (T_{e}) modulation show that the (n[over Ë]/n) propagation is faster than the heat pulse propagation near the O point of the magnetic island. This faster n[over Ë]/n propagation is experimental evidence of the turbulence spreading from the X point to the O point of the magnetic island.
RESUMO
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.
RESUMO
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.
RESUMO
Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops â¼100 µs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.
RESUMO
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.
RESUMO
A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) â² 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.
RESUMO
A novel spectroscopy diagnostic for measuring internal magnetic fields in high temperature magnetized plasmas has been developed. It involves spectrally resolving the Balmer-α (656 nm) neutral beam radiation split by the motional Stark effect with a spatial heterodyne spectrometer (SHS). The unique combination of high optical throughput (3.7 mm2sr) and spectral resolution (δλ â¼ 0.1 nm) allows these measurements to be made with time resolution âª1 ms. The high throughput is effectively utilized by incorporating a novel geometric Doppler broadening compensation technique in the spectrometer. The technique significantly reduces the spectral resolution penalty inherent to using large area, high-throughput optics while still collecting the large photon flux provided by such optics. In this work, fluxes of order 1010 s-1 support the measurement of deviations of <5 mT (ΔλStark â¼ 10-4 nm) in the local magnetic field with 50 µs time resolution. Example high time resolution measurements of the pedestal magnetic field throughout the ELM cycle of a DIII-D tokamak plasma are presented. Local magnetic field measurements give access to the dynamics of the edge current density, which is essential to understanding stability limits, edge localized mode generation and suppression, and predicting performance of H-mode tokamaks.
RESUMO
It is planned to use external magnetic perturbations at acoustic frequencies at the DIII-D tokamak to attempt to drive geodesic acoustic modes (GAM) to modify the turbulent transport. We show that this might not only be possible--despite the well-known electrostatic nature of the GAMs--but might be a viable and efficient method to generate GAMs in magnetically confined plasmas, by developing an elegant analytic method which allows us to couple numerical dynamic equilibrium calculations with massively parallel non-Boussinesq turbulence code runs and yields practical estimates of the effectivity of the method.
RESUMO
A new high radial resolution 2D multichannel Charge eXchange Imaging (CXI) diagnostic is under development for deployment at DIII-D. The diagnostic system will measure low-to-intermediate radial wavenumber carbon density fluctuations by observing the n = 8 - 7 (λ = 529.06 nm) C-VI emission line, resulting from charge exchange collisions between heating neutral beam atoms and the intrinsic carbon ion density. The new CXI diagnostic will provide measurements with ΔR â¼ 0.4 cm to access higher kr instabilities (kr < 8 cm-1) predicted to arise in the steep-gradient region of the H-mode pedestal. The CXI system will feature 60 fiber bundles in a 12 × 5 arrangement, with each bundle consisting of four 1 mm fibers. A custom optical system has been designed to filter and image incoming signals onto an 8 × 8 avalanche photodiode array. Additionally, a novel electronics suite has been designed and commissioned to amplify and digitize the relatively low-intensity carbon signal at a 2 MHz bandwidth. Forward modeling results of the active C-VI emission suggest sufficient signal to noise ratios to resolve turbulent fluctuations. Prototype measurements demonstrate the ability to perform high frequency pedestal measurements.
RESUMO
A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of nâ¼10-25; poloidal wave numbers of k(θ)â¼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)â¼ω(s)â¼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure.
RESUMO
An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to xÌxâ¼1% (x = Ti, vâ¥) and up to â¼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by â¼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of â¼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103-104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.
RESUMO
Measurement of electrostatic potential, or local electric field, turbulence is a critical missing component in validating nonlinear turbulence and transport simulations of fusion plasmas. A novel diagnostic is being developed for measuring local electric field fluctuations, E Ì ( r , t ) , via high-speed measurements of the light emitted from a hydrogenic neutral beam. It exploits the proportionality of the spectral line splitting from the Motional Stark Effect to the total electric field experienced by the neutral atom at the excitation site. The measurement is localized by the usual cross-beam geometry of beam-spectroscopy measurements. The corner stone of the diagnostic is a high spectral resolution, high etendue spatial heterodyne spectrometer (SHS). A SHS design with high etendue (â¼5 mm2 sr) and resolution (â¼0.14 nm) meets the formidable spectrometer requirements. Field tests of the spectrometer at the DIII-D tokamak demonstrate that the beam emission spectrum produced by the SHS agrees with that of a traditional spectrometer and that the measured flux is adequate for turbulence studies.
RESUMO
The 2D turbulent E × B flow-field is inferred from density fluctuation images obtained with the beam emission spectroscopy diagnostic on DIII-D using the orthogonal dynamic programming velocimetry algorithm. A synthetic turbulence model is used to test the algorithm and optimize it for measuring zonal flows. Zonal flow measurements are found to require a signal-to-noise ratio above â¼10 and a zonal flow wavelength longer than â¼2 cm. Comparison between the velocimetry-estimated flow-field and the E × B flow-field using a nonlinear gyrokinetic GENE simulation finds that the flow-fields have identical spatial structure and differ only by the mean turbulence phase velocity, which is spatially uniform in this flux tube simulation.