Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Proteomics ; 18(3): 534-545, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30559323

RESUMO

The importance of IgG glycosylation, Fc-gamma receptor (FcγR) single nucleotide polymorphisms and FcγR copy number variations in fine tuning the immune response has been well established. There is a growing appreciation of the importance of glycosylation of FcγRs in modulating the FcγR-IgG interaction based on the association between the glycosylation of recombinant FcγRs and the kinetics and affinity of the FcγR-IgG interaction. Although glycosylation of recombinant FcγRs has been recently characterized, limited knowledge exists on the glycosylation of endogenous human FcγRs. In order to improve the structural understanding of FcγRs expressed on human cells we characterized the site specific glycosylation of native human FcγRIII from neutrophils of 50 healthy donors and from matched plasma for 43 of these individuals. Through this analysis we have confirmed site specific glycosylation patterns previously reported for soluble FcγRIII from a single donor, identified FcγRIIIb specific Asn45 glycosylation and an allelic effect on glycosylation at Asn162 of FcγRIIIb. Identification of FcγRIIIb specific glycosylation allows for assignment of FcγRIIIb alleles and relative copy number of the two alleles where DNA/RNA is not available. Intriguingly the types of structures found to be elevated at Asn162 in the NA2 allele have been shown to destabilize the Fc:FcγRIII interaction resulting in a faster dissociation rate. These differences in glycosylation may in part explain the differential activity reported for the two alleles which have similar in vitro affinity for IgG.


Assuntos
Asparagina/química , Receptores de IgG/química , Receptores de IgG/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Dosagem de Genes , Genótipo , Glicosilação , Voluntários Saudáveis , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Manose/química , Espectrometria de Massas , Modelos Moleculares , Neutrófilos/imunologia , Plasma/imunologia , Receptores de IgG/genética
2.
Proc Natl Acad Sci U S A ; 112(11): E1297-306, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733881

RESUMO

Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc-sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Desenho de Fármacos , Imunoglobulinas Intravenosas/uso terapêutico , Ácido N-Acetilneuramínico/metabolismo , Receptores Fc/metabolismo , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Vesícula/complicações , Vesícula/tratamento farmacológico , Vesícula/patologia , Modelos Animais de Doenças , Epidermólise Bolhosa Adquirida/complicações , Epidermólise Bolhosa Adquirida/tratamento farmacológico , Epidermólise Bolhosa Adquirida/patologia , Glicosilação/efeitos dos fármacos , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulinas Intravenosas/farmacocinética , Imunoglobulinas Intravenosas/farmacologia , Camundongos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/patologia , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento
3.
Cells ; 12(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681862

RESUMO

Immunoglobulin (IgG) Fc glycosylation has been shown to be important for the biological activity of antibodies. Fc sialylation is important for the anti-inflammatory activity of IgGs. However, evaluating the structure-activity relationship (SAR) of antibody Fc glycosylation has been hindered using simplified in vitro models in which antibodies are often displayed in monomeric forms. Presenting antibodies in monomeric forms may not accurately replicate the natural environment of the antibodies when binding their antigen in vivo. To address these limitations, we used different Fc-containing molecules, displaying their Fc domains in monovalent and multivalent fashion. Given the inhibitory role of Fc gamma receptor IIb (FcγRIIb) in autoimmune and inflammatory diseases, we focused on evaluating the impact of Fc sialylation on the activation of FcγRIIb. We report for the first time that in human cellular systems, sialic acid mediates the induction of FcγRIIb phosphorylation by IgG-Fc when the IgG-Fc is displayed in a multivalent fashion. This effect was observed with different types of therapeutic agents such as sialylated anti-TNFα antibodies, sialylated IVIg and sialylated recombinant multivalent Fc products. These studies represent the first report of the specific effects of Fc sialylation on FcγRIIb signaling on human immune cells and may help in the characterization of the anti-inflammatory activity of Fc-containing therapeutic candidates.


Assuntos
Anticorpos , Meio Ambiente , Humanos , Glicosilação , Imunoglobulinas Intravenosas/farmacologia
4.
Arthritis Res Ther ; 21(1): 216, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647025

RESUMO

BACKGROUND: The goal of this study is to use comprehensive molecular profiling to characterize clinical response to anti-TNF therapy in a real-world setting and identify reproducible markers differentiating good responders and non-responders in rheumatoid arthritis (RA). METHODS: Whole-blood mRNA, plasma proteins, and glycopeptides were measured in two cohorts of biologic-naïve RA patients (n = 40 and n = 36) from the Corrona CERTAIN (Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory coNditions) registry at baseline and after 3 months of anti-TNF treatment. Response to treatment was categorized by EULAR criteria. A cell type-specific data analysis was conducted to evaluate the involvement of the most common immune cell sub-populations. Findings concordant between the two cohorts were further assessed for reproducibility using selected NCBI-GEO datasets and clinical laboratory measurements available in the CERTAIN database. RESULTS: A treatment-related signature suggesting a reduction in neutrophils, independent of the status of response, was indicated by a high level of correlation (ρ = 0.62; p < 0.01) between the two cohorts. A baseline, response signature of increased innate cell types in responders compared to increased adaptive cell types in non-responders was identified in both cohorts. This result was further assessed by applying the cell type-specific analysis to five other publicly available RA datasets. Evaluation of the neutrophil-to-lymphocyte ratio at baseline in the remaining patients (n = 1962) from the CERTAIN database confirmed the observation (odds ratio of good/moderate response = 1.20 [95% CI = 1.03-1.41, p = 0.02]). CONCLUSION: Differences in innate/adaptive immune cell type composition at baseline may be a major contributor to response to anti-TNF treatment within the first 3 months of therapy.


Assuntos
Imunidade Adaptativa/fisiologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Perfilação da Expressão Gênica/métodos , Imunidade Inata/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Imunidade Adaptativa/efeitos dos fármacos , Adulto , Idoso , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/imunologia , Estudos de Coortes , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia
5.
PLoS One ; 12(7): e0181251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759653

RESUMO

Intravenous immunoglobulin (IVIg) is a complex mixture drug comprising diverse immunoglobulins and non-IgG proteins purified from the plasma of thousands of healthy donors. Approved IVIg products on the market differ regarding source of plasma, isolation process, and formulation. These products are used widely, and often interchangeably, for the treatment of immunodeficiency and autoimmune and inflammatory diseases, but their mechanisms of action in different indications are not well understood. A primary limitation to understanding the therapeutic relevance of specific components within IVIg has been the limited resolution of analytics historically implemented to characterize its complex mixture. In this study, high-resolution analytics were applied to better understand the composition of IVIg and product variations. We characterized three approved IVIg products: Gammagard®, Privigen®, and Octagam®. Differences in the distribution of molecular weight species, IgG sequence variants, isoforms, glycoforms, and the repertoire of previously reported antibody specificities were identified. We also compared the effect of aging on these products to identify changes in size distribution and posttranslational modifications. This type of characterization may provide insights into the specific factors and components of IVIg that may influence its activity and ultimately lead to optimization of IVIg products for use in autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Imunoglobulina G/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Síndromes de Imunodeficiência/tratamento farmacológico , Envelhecimento , Humanos , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas
6.
Sci Transl Med ; 8(365): 365ra158, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27856797

RESUMO

Autoantibody immune complex (IC) activation of Fcγ receptors (FcγRs) is a common pathogenic hallmark of multiple autoimmune diseases. Given that the IC structural features that elicit FcγR activation are poorly understood and the FcγR system is highly complex, few therapeutics can directly block these processes without inadvertently activating the FcγR system. To address these issues, the structure activity relationships of an engineered panel of multivalent Fc constructs were evaluated using sensitive FcγR binding and signaling cellular assays. These studies identified an Fc valency with avid binding to FcγRs but without activation of immune cell effector functions. These observations directed the design of a potent trivalent immunoglobulin G-Fc molecule that broadly inhibited IC-driven processes in a variety of immune cells expressing FcγRs. The Fc trimer, Fc3Y, was highly efficacious in three different animal models of autoimmune diseases. This recombinant molecule may represent an effective therapeutic candidate for FcγR-mediated autoimmune diseases.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes/terapia , Doenças do Complexo Imune/terapia , Fragmentos Fc das Imunoglobulinas/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Artrite/imunologia , Artrite/terapia , Artrite Experimental/imunologia , Artrite Experimental/terapia , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Linhagem Celular , Epidermólise Bolhosa Adquirida/imunologia , Epidermólise Bolhosa Adquirida/terapia , Humanos , Doenças do Complexo Imune/imunologia , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Fagócitos , Ativação Plaquetária , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia , Transdução de Sinais
7.
J Biomol Screen ; 20(6): 768-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851037

RESUMO

Fidelity of glycan structures is a key requirement for biotherapeutics, with carbohydrates playing an important role for therapeutic efficacy. Comprehensive glycan profiling techniques such as liquid chromatography (LC) and mass spectrometry (MS), while providing detailed description of glycan structures, require glycan cleavage, labeling, and paradigms to deconvolute the considerable data sets they generate. On the other hand, lectins as probes on microarrays have recently been used in orthogonal approaches for in situ glycoprofiling but require analyte labeling to take advantage of the capabilities of automated microarray readers and data analysis they afford. Herein, we describe a lectin-based microtiter assay (lectin-enzyme-linked immunosorbent assay [ELISA]) to quantify terminal glycan moieties, applicable to in vitro and in-cell glycan-engineered Fc proteins as well as intact IgGs from intravenous immunoglobulin (IVIG), a blood product containing pooled polyvalent IgG antibodies extracted from plasma from healthy human donors. We corroborate our findings with industry-standard LC-MS profiling. This "customizable" ELISA juxtaposes readouts from multiple lectins, focusing on a subset of glycoforms, and provides the ability to discern single- versus dual-arm glycosylation while defining levels of epitopes at sensitivities comparable to MS. Extendable to other biologics, this ELISA can be used stand-alone or complementary to MS for quantitative glycan analysis.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Glicosilação , Lectinas/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulinas Intravenosas/metabolismo , Espectrometria de Massas , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa