Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respir Care ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079724

RESUMO

BACKGROUND: Beneficial effects of breathing at FIO2 < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with FIO2 as low as 0.11 in 5 healthy volunteers. METHODS: All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from FIO2 of 0.16 on the first day to FIO2 of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' SpO2 , heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS: Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased SpO2 and increased heart rate. At FIO2 of 0.14, the mean SpO2 was 92%; at FIO2 of 0.13, the mean SpO2 was 93%; at FIO2 of 0.12, the mean SpO2 was 88%; at FIO2 of 0.11, the mean SpO2 was 85%; and, finally, at an FIO2 of 0.21, the mean SpO2 was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS: Results of the current physiologic study suggests that, within a hospital setting, delivering FIO2 as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.

2.
Respir Care ; 68(3): 384-391, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750259

RESUMO

BACKGROUND: Mechanical ventilation of the neonate requires ventilators than can deliver precise and accurate tidal volume (VT) and PEEP to avoid lung injury. Due to small neonatal VT and the disproportionate effect of endotracheal tube leak in these patients, accomplishing precise and accurate VT delivery is difficult. Whereas neonatal ICU ventilators are validated in this population, thorough studies testing the performance of anesthesia ventilators in delivering small VT in neonates are lacking. METHODS: Three anesthesia ventilators, Dräger Apollo, GE Avance, and Getinge Flow-i; and 2 ICU ventilators, Medtronic PB980 and Nihon Kohden NKV-550, were tested under volume control mode at VT of 5, 20, 40, and 60 mL. Three combinations of lung compliance and airway resistance were tested using a Servo ASL 5000 lung simulator. RESULTS: In a scenario without leak, the measured VT was greater than the set VT by > 10% in the Apollo (21.0% [18.8-26.0]); measured VT was less than the set VT by > 10% in the Flow-i (-19% [-20.8 to -18.7]). The Avance, PB980, and NKV-550 presented a volume error < 10% (-9.50% [-10.8 to -4.4], -5.8% [-11.8 to -3.5], and 5.4% [-4.5 to 18.9], respectively). Considering all combinations of set VT, leaks, and respiratory mechanics, none of the anesthesia ventilators were able to deliver a median measured VT within a 10% error. The bias between measured VT and set VT varied widely among ventilators (from 4.27 mL to -10.59 mL). Additionally, in the Apollo ventilator, PEEP was underdelivered with the largest leak value. CONCLUSIONS: Our results suggest that in comparison with the 2 neonatal ICU ventilators tested, the anesthesia ventilators did not greatly differ in terms of VT delivery in the presence of a gas leak.


Assuntos
Anestesia , Ventiladores Mecânicos , Recém-Nascido , Humanos , Volume de Ventilação Pulmonar , Pulmão , Unidades de Terapia Intensiva Neonatal
3.
J Clin Med ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36835785

RESUMO

(1) The use of high-flow nasal cannula (HFNC) combined with frequent respiratory monitoring in patients with acute hypoxic respiratory failure due to COVID-19 has been shown to reduce intubation and mechanical ventilation. (2) This prospective, single-center, observational study included consecutive adult patients with COVID-19 pneumonia treated with a high-flow nasal cannula. Hemodynamic parameters, respiratory rate, inspiratory fraction of oxygen (FiO2), saturation of oxygen (SpO2), and the ratio of oxygen saturation to respiratory rate (ROX) were recorded prior to treatment initiation and every 2 h for 24 h. A 6-month follow-up questionnaire was also conducted. (3) Over the study period, 153 of 187 patients were eligible for HFNC. Of these patients, 80% required intubation and 37% of the intubated patients died in hospital. Male sex (OR = 4.65; 95% CI [1.28; 20.6], p = 0.03) and higher BMI (OR = 2.63; 95% CI [1.14; 6.76], p = 0.03) were associated with an increased risk for new limitations at 6-months after hospital discharge. (4) 20% of patients who received HFNC did not require intubation and were discharged alive from the hospital. Male sex and higher BMI were associated with poor long-term functional outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa