Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Bot ; 110(10): e16222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561648

RESUMO

PREMISE: The interaction between ecological and evolutionary processes has been recognized as an important factor shaping the evolutionary history of species. Some authors have proposed different ecological and evolutionary hypotheses concerning the relationships between plants and their pollinators; a special case is the interaction and suspected coevolution among Agave spp. and their main pollinators, the Leptonycteris bats. Agave spp. have, in general, a pollination syndrome compatible with chiropterophily including floral shape and size, nocturnal nectar production, and nectar quality and sugar concentration. Our goal was to analyze the interaction Agave-Leptonycteris and its dynamics during three different climate scenarios. METHODS: We modeled the Agave-Leptonycteris interaction in its spatial and temporal components during the Pleistocene using Ecological Niche Models (ENMs) and three climate scenarios: Current, Last Glacial Maximum (LGM), and Last InterGlacial (LIG). Furthermore, we analyzed the geographic correlation between 96 Agave spp. and two of the Mexican Tequila bats, genus Leptonycteris. RESULTS: We found that Leptonycteris spp. interact with different Agave spp. over their migratory routes. We propose an interaction refuge in Metztitlán and Tehuacán-Cuicatlán areas, where Agave- Leptonycteris interaction has probably remained active. During the nonmigratory season, both bat species consume nectar of almost the same Agave spp., suggesting the possibility of a diffuse coevolution among Agave and Leptonycteris bats. CONCLUSIONS: We propose that in the areas related to migratory bat movements, each bat species interacts with different Agave spp., whereas in the areas occupied by nonmigrant individuals, both bat species consume nectar of almost the same Agave taxa.


Assuntos
Agave , Quirópteros , Humanos , Animais , Néctar de Plantas , Polinização , Evolução Biológica
2.
Biol Lett ; 19(11): 20230358, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964576

RESUMO

Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.


Assuntos
Quirópteros , Vírus , Animais , Humanos , Reservatórios de Doenças , África
3.
Environ Res ; 185: 109293, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217363

RESUMO

The Megalopolis of Mexico is one of the largest cities in the world and presents substantial problems of metal pollution. Insectivorous bats that inhabit this city are potentially exposed to metals and could therefore serve as a good biomonitor. We collected 70 adult male individuals of Tadarida brasiliensis (Chiroptera: Molossidae) from two areas inside the Megalopolis (Cuautitlán and Xochimilco) and two rural environments in Central Mexico (Tequixquiac and Tlalcozotitlán). We analyzed livers to determine the total concentrations of ten metals by the ICP-MS technique, compared concentrations among study sites to provide evidence of metal exposure, and explored the associations between metals and their accumulation patterns in bats. The hepatic metal concentrations we recorded were generally consistent with those of similar studies in insectivorous bats. Higher concentrations of Cu and Zn in Cuautitlán and Xochimilco bats were associated with vehicular traffic. Higher concentrations of V, Cr, and Co in Tequixquiac bats and Cd in Tlalcozotitlán bats were linked with industrial, agricultural, or sewage sources. Variations in Fe and Mn concentrations were related to geogenic sources or local conditions. Similar Ni and Pb concentrations were linked with strong homeostatic controls or historical pollution. Accumulation patterns showed that all urban bats belonged to a single population with similar degrees of metal exposure, while rural bats belonged to two different populations exposed to different metals. Our results highlight the need to monitor the emissions generated by particular sources in each study site.


Assuntos
Quirópteros , Metais Pesados , Poluentes do Solo , Adulto , Animais , Cidades , Monitoramento Ambiental , Humanos , Masculino , Metais Pesados/análise , México , Poluentes do Solo/análise
4.
BMC Genet ; 20(1): 100, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881935

RESUMO

BACKGROUND: Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. RESULTS: We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. CONCLUSIONS: The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


Assuntos
Variação Genética , Genética Populacional/métodos , Panthera/genética , Animais , Belize , Conservação dos Recursos Naturais , Ecossistema , Evolução Molecular , Fluxo Gênico , Repetições de Microssatélites
5.
Ecology ; 99(7): 1691, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961270

RESUMO

The field of movement ecology has rapidly grown during the last decade, with important advancements in tracking devices and analytical tools that have provided unprecedented insights into where, when, and why species move across a landscape. Although there has been an increasing emphasis on making animal movement data publicly available, there has also been a conspicuous dearth in the availability of such data on large carnivores. Globally, large predators are of conservation concern. However, due to their secretive behavior and low densities, obtaining movement data on apex predators is expensive and logistically challenging. Consequently, the relatively small sample sizes typical of large carnivore movement studies may limit insights into the ecology and behavior of these elusive predators. The aim of this initiative is to make available to the conservation-scientific community a dataset of 134,690 locations of jaguars (Panthera onca) collected from 117 individuals (54 males and 63 females) tracked by GPS technology. Individual jaguars were monitored in five different range countries representing a large portion of the species' distribution. This dataset may be used to answer a variety of ecological questions including but not limited to: improved models of connectivity from local to continental scales; the use of natural or human-modified landscapes by jaguars; movement behavior of jaguars in regions not represented in this dataset; intraspecific interactions; and predator-prey interactions. In making our dataset publicly available, we hope to motivate other research groups to do the same in the near future. Specifically, we aim to help inform a better understanding of jaguar movement ecology with applications towards effective decision making and maximizing long-term conservation efforts for this ecologically important species. There are no costs, copyright, or proprietary restrictions associated with this data set. When using this data set, please cite this article to recognize the effort involved in gathering and collating the data and the willingness of the authors to make it publicly available.


Assuntos
Panthera , Animais , Ecologia , Feminino , Humanos , Masculino , Movimento
6.
Environ Manage ; 62(2): 229-240, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29732478

RESUMO

We estimated U.S. and Mexican citizens' willingness to pay (WTP) for protecting habitat for a transborder migratory species, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), using the contingent valuation method. Few contingent valuation surveys have evaluated whether households in one country would pay to protect habitat in another country. This study addresses that gap. In our study, Mexican respondents were asked about their WTP for conservation of Mexican free-tailed bat habitat in Mexico and in the United States. Similarly, U.S. respondents were asked about their WTP for conservation in the United States and in Mexico. U.S. households would pay $30 annually to protect habitat in the United States and $24 annually to protect habitat in Mexico. Mexican households would pay $8 annually to protect habitat in Mexico and $5 annually to protect habitat in the United States. In both countries, these WTP amounts rose significantly for increasing the size of the bat population rather than simply stabilizing the current bat population. The ratio of Mexican household WTP relative to U.S. household WTP is nearly identical to that of Mexican household income relative to U.S. household income. This suggests that the perceived economic benefits received from the bats is similar in Mexico and the United States, and that scaling WTP by relative income in international benefit transfer may be plausible.


Assuntos
Migração Animal , Quirópteros/crescimento & desenvolvimento , Conservação dos Recursos Naturais/economia , Monitoramento Ambiental/economia , Renda , Animais , Quirópteros/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Humanos , México , Percepção , Inquéritos e Questionários , Estados Unidos
7.
Conserv Biol ; 28(1): 4-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400726

RESUMO

Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ∼ 36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high-profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species' needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past.


Assuntos
Migração Animal , Biodiversidade , Conservação dos Recursos Naturais , Política Ambiental , Animais , Estados Unidos
8.
Science ; 384(6691): 9, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574127

RESUMO

In a world where biodiversity is on the line on many fronts-from armed conflict to pandemics to climate change-defending institutions that have effectively managed it is paramount. In the global effort to protect biodiversity, Mexico has been at the forefront. In particular, for more than 30 years, Mexico's National Commission for the Knowledge and Use of Biodiversity (CONABIO) has promoted research, compiled information on the biodiversity of Mexico and elsewhere, and connected academia, government, and society to guide decision-making. Unfortunately, the demise of CONABIO, which began in 2018 under the current administration, may be fully realized soon. Last month, the Mexican government announced its intent to reduce CONABIO from a multi-ministry federal government agency to a branch within the environment ministry. This will strip CONABIO of its independent voice, credibility, and influence on national and international policy. As this decision is open for public comment, it is important for the scientific community to speak out strongly against this change.


Assuntos
Biodiversidade , Política Pública , México , Órgãos Governamentais
9.
Acta Trop ; 257: 107321, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972559

RESUMO

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.

11.
Artigo em Inglês | MEDLINE | ID: mdl-23370293

RESUMO

Digestive capabilities of nectar-feeding vertebrates to assimilate sugars affect their ability to acquire and store energy and could determine the minimal temperatures at which these animals can survive. Here, we described the sugar digestive capability of Leptonycteris nivalis and related it with its capacity to live in cold environments. We measured the enzymatic activity, food intake rate and changes in body mass of bats feeding at four different sucrose concentrations (from 5 to 35% wt./vol.). Additionally, we used a mathematical model to predict food intake and compared it with the food intake of bats. L. nivalis was able to obtain ~111.3kJ of energy regardless of the sugar concentration of their food. Also, bats gained ~2.57g of mass during the experimental trials and this gain was independent of sugar concentration. The affinity (1/Km) of sucrase (EC 3.2.1.48) was one order of magnitude higher relative to that reported for its sister species Leptonycteris yerbabuenae (0.250 and 0.0189mmol(-1)L, respectively), allowing this species to have a higher energy intake rate. We propose that the high ability to acquire energy conferred L. nivalis the faculty to invade cold environments, avoiding in this way the ecological competition with its sympatric species L. yerbabuenae.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Quirópteros/metabolismo , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Animais , Carboidratos , Temperatura Baixa , Meio Ambiente , México , Néctar de Plantas/metabolismo , Simpatria/fisiologia
12.
PLoS One ; 18(6): e0287536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352304

RESUMO

Bats are prodigious consumers of agricultural and forest pests, and are, therefore, a natural asset for agricultural productivity, suppressing populations of such pests. This study provides baseline information of diet of 143 bats belonging to eight insectivorous bat species from agricultural areas of Rwanda while evaluating the effectiveness of bats as pest suppressors. Using DNA metabarcoding to analyze bat fecal pellets, 85 different insect species were detected, with 60% (n = 65), 64% (n = 11) and 78% (n = 9) found to be agricultural pests from eastern, northern and western regions, respectively. Given the high percentages of agricultural pests detected, we submit that Rwandan insectivorous bats have the capacity for biocontrol of agricultural pests. Rwandan bat populations should be protected and promoted since they may foster higher crop yields and sustainable livelihoods.


Assuntos
Quirópteros , Mariposas , Animais , Ecossistema , Ruanda , Florestas
13.
J Exp Biol ; 215(Pt 22): 3989-96, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22899529

RESUMO

Mammals frequently use nectar as a supplementary food, while a predominantly nectarivorous lifestyle with morphological specializations for this feeding mode is rare within the class. However, Neotropical flower-visiting bats largely depend on nectar resources and show distinct adaptations to a nectar diet. Glossophagine bats form local guilds of 2-6 species that may differ distinctly in skull morphology. It is still unknown how and to what extent this morphological diversity influences the efficiency of nectar extraction and hence resource partitioning within the local bat guild. As foraging behaviour is a key factor for niche partitioning of co-existing species, we compared nectar extraction behaviour and efficiency at different flower depths among sympatric bat species with different degrees of morphological specialization (Glossophaga soricina, Leptonycteris yerbabuenae and Musonycteris harrisoni). In flight cage experiments with artificial flowers, at deeper nectar levels all species showed a distinct decrease in the amount of nectar extracted per visit and an increase in the time spent hovering at the flower, indicating increased energetic cost when foraging on longer tubed flowers. The lowest nectar extraction efficiency (g s(-1)) was found in the small G. soricina and the highest in the largest species L. yerbabuenae. However, when also considering the different energy requirements of the different-sized bat species, the morphologically most specialized M. harrisoni consistently showed the highest foraging efficiency. Our data suggest that the long rostrum and tongue of the extremely specialized M. harrisoni are probably not evolved for monopolization of co-evolved deep flowers but for allowing efficient access to the broadest range of the local chiropterophilous flower resources.


Assuntos
Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Comportamento Alimentar/fisiologia , Néctar de Plantas/metabolismo , Simpatria , Animais , Metabolismo Energético/fisiologia , Voo Animal/fisiologia , Modelos Lineares , Mandíbula/anatomia & histologia , Especificidade da Espécie , Fatores de Tempo
14.
J Med Entomol ; 59(4): 1291-1302, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35604414

RESUMO

We evaluated the morphometric variation of wing mite Periglischrus paracaligus Herrin and Tipton, along with the distribution of their host Leptonycteris yerbabuenae Martinez and Villa, in Mexico. A total of 115 female and 96 male specimens of P. paracaligus were used to conduct linear and geometric morphometric analyses. We assessed the influence of the geographic distribution of the migratory and nonmigratory populations of its bat host species on changes in size and shape on these parasites. Both analyses revealed high intraspecific variation in P. paracaligus, but subtle geographic differentiation. None of the approaches used identified a consistent pattern that separates unambiguously migratory from nonmigratory populations. Females presented more phenotypic variation than males and UPGMA analyses showed southern and northern colonies grouped in two distinct clades. Males on the other hand showed randomly grouped colonies with no geographic concordance. Interestingly, the most differentiated colony was the north Pacific colony of Jalisco. For both, males and females, isolation by distance (IBD) was not observed. We discuss these results as a possible scenario of contact between migratory populations located in northern Mexico with nonmigratory populations in other localities in central and southern Mexico conforming to a panmictic population along with their distribution range.


Assuntos
Quirópteros , Infestações por Ácaros , Ácaros , Animais , Quirópteros/parasitologia , Feminino , Especificidade de Hospedeiro , Masculino , Infestações por Ácaros/parasitologia , Asas de Animais
15.
J Med Entomol ; 59(4): 1198-1210, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35639803

RESUMO

Wing mites of the genus Periglischrus are ectoparasites exclusively associated with phyllostomid bats. These mites show high host specificity and have been studied to understand the evolutionary history of their bat hosts mainly by using a morphological variation. Through a phylogeographic approach, we analyzed the genetic diversity and population genetic structure of the ectoparasite Periglischrus paracaligus Herrin and Tipton which parasitizes Leptonycteris yerbabuenae Martínez and Villa (lesser long-nosed bat) in Mexico. By the implementation of a multilocus approach, we found that P. paracaligus populations were diverse for haplotype diversity, and had values ranging from 0.5 to 1. No genetic structuring in the P. paracaligus parasites was observed along with the distribution of the host, L. yerbabuenae, in Mexico, nor when populations or regions were compared, but our results revealed a process of historical demographic expansion in all the analyzed markers. We discuss possible scenarios that could explain the lack of population structure in the light of the data analyzed for the parasites and the biology of L. yerbabuenae, such as the interplay between parasite and host traits being responsible for the genetic make-up of parasite populations. We also inferred its phylogenetic position among wing mites parasitizing the two other species of Leptonycteris bats. Long-nosed bats' monophyly helps to explain the observed presence of distinctive clades in the wing mite's phylogeny in specific association with each long-nosed bat host species.


Assuntos
Quirópteros , Infestações por Ácaros , Ácaros , Animais , Quirópteros/parasitologia , Genética Populacional , Interações Hospedeiro-Parasita , Infestações por Ácaros/parasitologia , Filogenia
16.
Plants (Basel) ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616253

RESUMO

We compiled an updated database of all Agave species found in Mexico and analyzed it with specific criteria according to their biological parameters to evaluate the conservation and knowledge status of each species. Analyzing the present status of all Agave species not only provides crucial information for each species, but also helps determine which ones require special protection, especially those which are heavily used or cultivated for the production of distilled beverages. We conducted an extensive literature review search and compiled the conservation status of each species using mainstream criteria by IUCN. The information gaps in the database indicate a lack of knowledge and research regarding specific Agave species and it validates the need to conduct more studies on this genus. In total, 168 Agave species were included in our study, from which 89 are in the subgenus Agave and 79 in the subgenus Littaea. Agave lurida and A. nizandensis, in the subgenus Agave and Littaea, respectively, are severely endangered, due to their endemism, lack of knowledge about pollinators and floral visitors, and their endangered status according to the IUCN Red List. Some species are at risk due to the loss of genetic diversity resulting from production practices (i.e., Agave tequilana), and others because of excessive and unchecked overharvesting of wild plants, such as A. guadalajarana, A. victoriae-reginae, A. kristenii, and others. Given the huge economic and ecological importance of plants in the genus Agave, our review will be a milestone to ensure their future and continued provision of ecosystem services for humans, as well as encouraging further research in Agave species in an effort to enhance awareness of their conservation needs and sustainable use, and the implementation of eco-friendly practices in the species management.

17.
PeerJ ; 10: e14398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415865

RESUMO

Background: Genetic diversity is fundamental for the survival of species. In particular, in a climate change scenario, it is crucial that populations maintain genetic diversity so they can adapt to novel environmental conditions. Genetic diversity in wild agaves is usually high, with low genetic differentiation among populations, in part maintained by the agave pollinators such as the nectarivorous bats. In cultivated agaves, patterns of genetic diversity vary according to the intensity of use, management, and domestication stage. In Agave tequilana Weber var. azul (A. tequilana thereafter), the plant used for tequila production, clonal propagation has been strongly encouraged. These practices may lead to a reduction in genetic diversity. Methods: We studied the diversity patterns with genome-wide SNPs, using restriction site associated DNA sequencing in cultivated samples of A. tequilana from three sites of Jalisco, Mexico. For one locality, seeds were collected and germinated in a greenhouse. We compared the genomic diversity, levels of inbreeding, genetic differentiation, and connectivity among studied sites and between adults and juvenile plants. Results: Agave tequilana presented a genomic diversity of HT = 0.12. The observed heterozygosity was higher than the expected heterozygosity. Adults were more heterozygous than juveniles. This could be a consequence of heterosis or hybrid vigor. We found a shallow genetic structure (average paired FST = 0.0044). In the analysis of recent gene flow, we estimated an average migration rate among the different populations of m = 0.25. In particular, we found a population that was the primary source of gene flow and had greater genomic diversity (HE and HO ), so we propose that this population should continue to be monitored as a potential genetic reservoir. Discussion: Our results may be the consequence of more traditional management in the studied specific region of Jalisco. Also, the exchange of seeds or propagules by producers and the existence of gene flow due to occasional sexual reproduction may play an important role in maintaining diversity in A. tequilana. For populations to resist pests, to continue evolving and reduce their risk of extinction under a climate change scenario, it is necessary to maintain genetic diversity. Under this premise we encourage to continue acting in conservation programs for this species and its pollinators.


Assuntos
Agave , Agave/genética , México , Heterozigoto , Bebidas Alcoólicas , Genômica
18.
Microbiol Spectr ; 9(3): e0152521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817279

RESUMO

Migratory animals live in a world of constant change. Animals undergo many physiological changes preparing themselves for the migration. Although this field has been studied extensively over the last decades, we know relatively little about the seasonal changes that occur in the microbial communities that these animals carry in their guts. Here, we assessed the V4 region of the 16S rRNA high-throughput sequencing data as a proxy to estimate microbiome diversity of tequila bats from fecal pellets and evaluate how the natural process of migration shapes the microbiome composition and diversity. We collected samples from individual bats at two localities in the dry forest biome (Chamela and Coquimatlán) and one site at the endpoint of the migration in the Sonoran Desert (Pinacate). We found that the gut microbiome of the tequila bats is dominated largely by Firmicutes and Proteobacteria. Our data also provide insights on how microbiome diversity shifts at the same site in consecutive years. Our study has demonstrated that both locality and year-to-year variation contribute to shaping the composition, overall diversity, and "uniqueness" of the gut microbiome of migratory nectar-feeding female bats, with localities from the dry forest biome looking more like each other compared to those from the desert biome. In terms of beta diversity, our data show a stratified effect in which the samples' locality was the strongest factor influencing the gut microbiome but with significant variation between consecutive years at the same locality. IMPORTANCE Migratory animals live in a world of constant change. The whole-body ecosystem needs a strong adapting capacity to thrive despite the changes. Our study used next-generation sequencing to determine how gut microbial change along the migratory path of the nectar-feeding tequila bats. The study of the gut microbiome is a great tool that can provide important insights that are relevant not just for management and conservation but also an initial investigation of the extent of the adaptation and preparedness of the individual animals, with respect not just to their current environment but also to all the environments involved in their yearly cycle.


Assuntos
Migração Animal , Bactérias/classificação , Quirópteros/microbiologia , Microbioma Gastrointestinal/fisiologia , Filogenia , Animais , Bactérias/genética , Biodiversidade , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Ribossômico 16S/genética
19.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372562

RESUMO

Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.


Assuntos
Comunicação , Disseminação de Informação/métodos , Mal-Entendido Terapêutico/psicologia , Animais , Quirópteros , Doenças Transmissíveis Emergentes , Conservação dos Recursos Naturais , Reservatórios de Doenças , Humanos , Idioma , Saúde Pública , Política Pública/tendências , Zoonoses/transmissão
20.
PLoS One ; 16(10): e0255555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34613994

RESUMO

The jaguar (Panthera onca) is one of the most threatened carnivores in the Americas. Despite a long history of research on this charismatic species, to date there have been few systematic efforts to assess its population size and status in most countries across its distribution range. We present here the results of the two National Jaguar Surveys for Mexico, the first national censuses in any country within the species distribution. We estimated jaguar densities from field data collected at 13 localities in 2008-2010 (2010 hereafter) and 11 localities in 2016-2018 (2018 hereafter). We used the 2010 census results as the basis to develop a National Jaguar Conservation Strategy that identified critical issues for jaguar conservation in Mexico. We worked with the Mexican government to implement the conservation strategy and then evaluated its effectivity. To compare the 2010 and 2018 results, we estimated the amount of jaguar-suitable habitat in the entire country based on an ecological niche model for both periods. Suitable jaguar habitat covered ~267,063 km2 (13.9% of the country's territory) in 2010 and ~ 288,890 km2 (~14.8% of the country's territory) in 2018. Using the most conservative density values for each priority region, we estimated jaguar densities for both the high and low suitable habitats. The total jaguar population was estimated in ~4,000 individuals for 2010 census and ~4,800 for the 2018 census. The Yucatan Peninsula was the region with the largest population, around 2000 jaguars, in both censuses. Our promising results indicate that the actions we proposed in the National Jaguar Conservation Strategy, some of which have been implemented working together with the Federal Government, other NGO's, and land owners, are improving jaguar conservation in Mexico. The continuation of surveys and monitoring programs of the jaguar populations in Mexico will provide accurate information to design and implement effective, science-based conservation measures to try to ensure that robust jaguar populations remain a permanent fixture of Mexico's natural heritage.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Panthera/fisiologia , Política Pública/legislação & jurisprudência , Animais , Ecossistema , México , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa