Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 71(5): 1065-1086, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36599975

RESUMO

Nutrient pollution has a diverse impact on the environment and human health. The presence of nutrients, such as ammonium and phosphate, is ubiquitous in the environment due to their extensive use in agricultural land and leaching through non-point sources. In this context, biochar-based composites could play an essential role in improving the soil's nutrient retention capacity. The present study aims to develop bentonite-biochar composites (BNT@BC 400 and 600) and utilize them as an ameliorating material in the coal mine degraded soil to reduce the leaching of ammonium and phosphate ions. The bentonite-biochar composite (BNT@BC 400 and 600) was synthesized using the pristine rice straw-derived biochar using the solvothermal method. The biochar was produced at two different pyrolytic temperatures, 400 °C and 600 °C, and denoted as BC 400 and 600, respectively. Hence, the bentonite-biochar composite was denoted as BNT@BC 400 and 600. The BNT@BC 400 and 600 were characterized using the elemental, proximate, SEM, XRD, and FTIR analysis. Subsequently, the BNT@BC composites were evaluated for the adsorptive removal of NH4+ and PO43- ions using batch adsorption and column leaching studies. In the soil columns, the BNT@BC 400 and 600 were mixed with the soil at two different application rates, viz. 1 and 2.5% (w/w). The leaching characteristics data were fitted using three different fixed-bed models to predict the maximum adsorption capacity of the amended soil columns and the dominant mechanism of adsorption. Results indicated that the BNT@BC 600 showed the maximum adsorption capacity of 33.77 and 64.23 mg g-1 for the adsorption of NH4+ and PO43- ions, respectively. The dominant adsorption mechanisms in the aqueous solution were the electrostatic attraction, complexation, ion exchange, and precipitation processes. In the soil columns, the sorption of NH4+ and PO43- ions was governed by diffusive mass transfer and electrostatic interaction. Findings of the study indicated that incorporating the BNT@BC composite in the soil can significantly reduce the leaching of the NH4+ and PO43- ions and increase the overall soil fertility.


Assuntos
Compostos de Amônio , Oryza , Humanos , Bentonita , Solo , Fosfatos , Carvão Vegetal
2.
Sci Total Environ ; 794: 148723, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217075

RESUMO

Providing a valuable application to the under-utilized solid residue of co-pyrolysis of biomass and plastics could substantially improve economic and environmental sustainability of the process, thereby fostering circular economy. This study focuses on the variation of thermal and physiochemical characteristics of solid char, produced from the co-pyrolysis of waste low-density polyethylene (WLDPE) and Eucalyptus wood with varying pyrolysis temperatures from 300 to 550 °C, residence times of 90-150 min, and relative percentage of 33% and 25% (w/w) WLDPE in the feedstock. The highest values of yield (37%), energy density (1.25) and high heat value (31 MJ/Kg) were observed with the char produced at 300 °C. The physical inhibition caused by the overlaying plastic coating on the surface of the char below 450 °C resulted in the same. However, with the increase in temperature, increase in fuel ratio by 78-79% and fixed carbon content by 68-69% were observed. The highest concentrations of fixed carbon (39%), fuel ratio (0.81) along with the lowest O/C and H/C ratios (0.07 and 0.13) were observed with the chars produced above 450 °C depicting their high degree of carbonization. The fuel value indices of all the chars were > 500 GJ/m3 indicating their suitability as high-quality fuels. Significant influences of residence time and feedstock ratio were also observed on properties of the char. The analysis of variance and principal component analysis also depicted significant variations in the properties of the char produced below and above the temperatures of 450 °C due to the inhibitory and synergetic effects. While the chars produced at 300-350 °C could be used for combustion/co-combustion in coal-fired boilers, chars produced above 450 °C can be opted as household fuel due to their low losses of energy, water vapour, and smoke during combustion.


Assuntos
Eucalyptus , Pirólise , Biomassa , Polietileno , Madeira
3.
Sci Total Environ ; 771: 144764, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736157

RESUMO

Heavy metals like Cr (VI), when released into the environment, pose a serious threat to animal and human health. In this study, iron and (3-Aminopropyl)triethoxysilane (APTES) biochar composites were prepared from the biochar, which was produced through the pyrolysis of rice straw at 400 and 600 °C, using the chemical processes with an aim that the doping of pristine biochar structure with the Fe and NH2 radicals would enhance the removal of Cr (VI) and Zn (II) adsorption in both aqueous solution and soil. Both biochar composites were mixed at a rate of 3% (w/w) with the mine soil for the soil incubation test, and after completion of the test, a soil fertility index (SFI) was calculated. Results showed that both iron and APTES biochar composites followed the Langmuir-Freundlich isotherm showing the maximum removal capacity of 100.59 mg/g for Cr (VI) by APTES/SiBC 600 and maximum adsorption capacity of 83.92 mg/g for Zn2+ by Fe/BC 400. The SFI of the mine-soil amended with both Fe and APTES biochar composites were 16.67 and 13.04%, respectively higher than the controlled study. The mitotic index of the A. cepa cells that grew up in the soil amended with Fe/BC and APTES/SiBC were 40.47 and 44.45%, respectively, higher than the controlled study. The results indicated that the incorporation of the Fe and APTES biochar composites in the soil effectively reduced the metal toxicity and improved the soil physicochemical properties. This study opens up the prospects of using biochar composites in contaminated soil and water treatments.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Adsorção , Carvão Vegetal , Humanos , Ferro , Metais Pesados/análise , Extratos Vegetais , Propilaminas , Silanos , Solo , Poluentes do Solo/análise , Zinco
4.
Toxics ; 9(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34822704

RESUMO

Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production. The release of SMX into the environment can lead to the development of antibiotic resistance among the microbial community, which can lead to frequent clinical infections. SMX removal from water is usually done through advanced treatment processes, such as adsorption, photocatalytic oxidation, and biodegradation. Among them, the advanced oxidation process using TiO2 and its composites is being widely used. TiO2 is a widely used photocatalyst; however, it has certain limitations, such as low visible light response and quick recombination of e-/h+ pairs. Integrating the biochar with TiO2 nanoparticles can overcome such limitations. The biochar-supported TiO2 composites showed a significant increase in the photocatalytic activities in the UV-visible range, which resulted in a substantial increase in the degradation of SMX in water. The present review has critically reviewed the methods of biochar TiO2 composite synthesis, the effect of biochar integration with the TiO2 on its physicochemical properties, and the chemical pathways through which the biochar/TiO2 composite degrades the SMX in water or aqueous solution. The degradation of SMX using photocatalysis can be considered a useful model, and the research studies presented in this review will allow extending this area of research on other types of similar pharmaceuticals or pollutants in general in the future.

5.
Sci Total Environ ; 712: 136337, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31945530

RESUMO

In this study, potassium-iron rice straw biochar composite (KRSB) was produced and compared with rice straw biochar (RSB) for the sorption of NO3-, PO43-, and NH4+ in aqueous medium and soil column. RSB was produced by pyrolyzing rice straw at 400 and 600 °C in a slow pyrolysis unit. KRSB was produced through chemical and hydrothermal treatments of rice straw biochar produced at 400 and 600 °C. Batch experiment results indicate that the KRSB showed better sorption capacity for nitrate, phosphate, and ammonium ions compared to pristine RSB. The sorption isotherms of all three nutrients (NO3-, PO43-, and NH4+) were better-explained by the Langmuir-Freundlich isotherm model. The column leaching experiment showed that the KRSB loaded soil reached maximum sorption capacity for PO43- and NO3- within six and eight days, respectively but, it showed poor sorption capacity for NH4+. The soil fertility index in the 400 and 600 KRSB amended soils were significantly increased by 50.68 and 52.85%, respectively compared to the control. Results indicated that KRSB could be utilized in the soil in two ways: first, to keep the nutrients attached to its surface and second, to release the nutrients in a phased and timely manner to increase their availability for plants.


Assuntos
Oryza , Adsorção , Compostos de Amônio , Carvão Vegetal , Preparações de Ação Retardada , Ferro , Nitratos , Fosfatos , Potássio , Solo , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa