Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 54(1): 94, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848924

RESUMO

Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.


Assuntos
Doenças dos Cavalos , Doenças Priônicas , Príons , Animais , Sequência de Aminoácidos , Doenças dos Cavalos/genética , Cavalos/genética , Polimorfismo Genético , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética
2.
J Gen Virol ; 96(12): 3715-3726, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26431976

RESUMO

Mesenchymal stem cells (MSCs) can be infected with prions and have been proposed as in vitro cell-based models for prion replication. In addition, autologous MSCs are of interest for cell therapy in neurodegenerative diseases. To the best of our knowledge, the effect of prion diseases on the characteristics of these cells has never been investigated. Here, we analysed the properties of MSCs obtained from bone marrow (BM-MSCs) and peripheral blood (PB-MSCs) of sheep naturally infected with scrapie ­ a large mammal model for the study of prion diseases. After three passages of expansion, MSCs derived from scrapie animals displayed similar adipogenic, chondrogenic and osteogenic differentiation ability as cells from healthy controls, although a subtle decrease in the proliferation potential was observed. Exceptionally, mesenchymal markers such as CD29 were significantly upregulated at the transcript level compared with controls. Scrapie MSCs were able to transdifferentiate into neuron-like cells, but displayed lower levels of neurogenic markers at basal conditions, which could limit this potential .The expression levels of cellular prion protein (PrPC) were highly variable between cultures, and no significant differences were observed between control and scrapie-derived MSCs. However, during neurogenic differentiation the expression of PrPC was upregulated in MSCs. This characteristic could be useful for developing in vitro models for prion replication. Despite the infectivity reported for MSCs obtained from scrapie-infected mice and Creutzfeldt­Jakob disease patients, protein misfolding cyclic amplification did not detect PrPSc in BM- or PB-MSCs from scrapie-infected sheep, which limits their use for in vivo diagnosis for scrapie.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Scrapie/patologia , Animais , Diferenciação Celular , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/metabolismo , Regulação da Expressão Gênica , Ovinos
3.
BMC Genomics ; 15: 59, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24450868

RESUMO

BACKGROUND: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. RESULTS: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. CONCLUSIONS: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease.


Assuntos
Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Linfonodos/metabolismo , Scrapie/fisiopatologia , Ovinos/genética , Ovinos/metabolismo , Animais , Análise por Conglomerados , Regulação para Baixo , Adesões Focais/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Príons/genética , Príons/metabolismo , Receptores de Citoadesina/genética , Receptores de Citoadesina/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Regulação para Cima
4.
BMC Vet Res ; 8: 169, 2012 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-22999337

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there in vitro properties. RESULTS: Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29, CD73 and CD90, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during neurogenesis. CONCLUSIONS: This study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal lineages and to transdifferentiate into neuron-like cells in vitro. Therefore, oPB-MSCs could serve as a valuable tool for biomedical research in fields including orthopaedics or prion diseases.


Assuntos
Fibroblastos/citologia , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Ovinos/sangue , Adipogenia , Animais , Técnicas de Cultura de Células/veterinária , Diferenciação Celular , Condrogênese , Neurogênese , Osteogênese
5.
Animals (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921147

RESUMO

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48-72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa