Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 307(3): H379-90, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24906914

RESUMO

We have previously shown that RhoA-mediated actin polymerization stimulates smooth muscle cell (SMC)-specific transcription by regulating the nuclear localization of the myocardin-related transcription factors (MRTFs). On the basis of the recent demonstration that nuclear G-actin regulates MRTF nuclear export and observations from our laboratory and others that the RhoA effector, mDia2, shuttles between the nucleus and cytoplasm, we investigated whether nuclear RhoA signaling plays a role in regulating MRTF activity. We identified sequences that control mDia2 nuclear-cytoplasmic shuttling and used mDia2 variants to demonstrate that the ability of mDia2 to fully stimulate MRTF nuclear accumulation and SMC-specific gene transcription was dependent on its localization to the nucleus. To test whether RhoA signaling promotes nuclear actin polymerization, we established a fluorescence recovery after photobleaching (FRAP)-based assay to measure green fluorescent protein-actin diffusion in the nuclear compartment. Nuclear actin FRAP was delayed in cells expressing nuclear-targeted constitutively active mDia1 and mDia2 variants and in cells treated with the polymerization inducer, jasplakinolide. In contrast, FRAP was enhanced in cells expressing a nuclear-targeted variant of mDia that inhibits both mDia1 and mDia2. Treatment of 10T1/2 cells with sphingosine 1-phosphate induced RhoA activity in the nucleus and forced nuclear localization of RhoA or the Rho-specific guanine nucleotide exchange factor (GEF), leukemia-associated RhoGEF, enhanced the ability of these proteins to stimulate MRTF activity. Taken together, these data support the emerging idea that RhoA-dependent nuclear actin polymerization has important effects on transcription and nuclear structure.


Assuntos
Núcleo Celular/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/genética , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Aorta Torácica/enzimologia , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Forminas , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Transfecção , Proteína rhoA de Ligação ao GTP
2.
Arterioscler Thromb Vasc Biol ; 31(2): 360-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106951

RESUMO

OBJECTIVE: Our goal was to test whether formin homology protein 1 (FHOD1) plays a significant role in the regulation of smooth muscle cell (SMC) differentiation and, if so, whether Rho kinase (ROCK)-dependent phosphorylation in the diaphanous autoinhibitory domain is an important signaling mechanism that controls FHOD1 activity in SMC. METHODS AND RESULTS: FHOD1 is highly expressed in aortic SMCs and in tissues with a significant SMC component. Exogenous expression of constitutively active FHOD1, but not wild-type, strongly activated SMC-specific gene expression in 10T1/2 cells. Treatment of SMC with the RhoA activator sphingosine-1-phosphate increased FHOD1 phosphorylation at Thr1141, and this effect was completely prevented by inhibition of ROCK with Y-27632. Phosphomimetic mutations to ROCK target residues enhanced FHOD1 activity, suggesting that phosphorylation interferes with FHOD1 autoinhibition. Importantly, knockdown of FHOD1 in SMC strongly inhibited sphingosine-1-phosphate-dependent increases in SMC differentiation marker gene expression and actin polymerization, suggesting that FHOD1 plays a major role in RhoA-dependent signaling in SMC. CONCLUSIONS: Our results indicate that FHOD1 is a critical regulator of SMC phenotype and is regulated by ROCK-dependent phosphorylation. Thus, additional studies on the role of FHOD1 during development and the progression of cardiovascular disease will be important.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Fetais/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Actinas/metabolismo , Animais , Células Cultivadas , Proteínas Fetais/genética , Forminas , Humanos , Camundongos , Modelos Animais , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Nucleares/genética , Fosforilação/fisiologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Transfecção , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP
3.
Arterioscler Thromb Vasc Biol ; 30(9): 1779-86, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702813

RESUMO

OBJECTIVE: The goals of this study were to identify the signaling pathway by which sphingosine 1-phosphate (S1P) activates RhoA in smooth muscle cells (SMC) and to evaluate the contribution of this pathway to the regulation of SMC phenotype. METHODS AND RESULTS: Using a combination of receptor-specific agonists and antagonists we identified S1P receptor 2 (S1PR2) as the major S1P receptor subtype that regulates SMC differentiation marker gene expression. Based on the known coupling properties of S1PR2 and our demonstration that overexpression of Galpha(12) or Galpha(13) increased SMC-specific promoter activity, we next tested whether the effects of S1P in SMC were mediated by the regulator of G protein-signaling-Rho guanine exchange factors (RGS-RhoGEFs) (leukemia-associated RhoGEF [LARG], PDZ-RhoGEF [PRG], RhoGEF [p115]). Although each of the RGS-RhoGEFs enhanced actin polymerization, myocardin-related transcription factor-A nuclear localization, and SMC-specific promoter activity when overexpressed in 10T1/2 cells, LARG exhibited the most robust effect and was the only RGS-RhoGEF activated by S1P in SMC. Importantly, siRNA-mediated depletion of LARG significantly inhibited the activation of RhoA and SMC differentiation marker gene expression by S1P. Knockdown of LARG had no effect on SMC proliferation but promoted SMC migration as measured by scratch wound and transwell assays. CONCLUSIONS: These data indicate that S1PR2-dependent activation of RhoA in SMC is mediated by LARG and that this signaling mechanism promotes the differentiated SMC phenotype.


Assuntos
Diferenciação Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lisofosfolipídeos/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular , Ativação Enzimática , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína rhoA de Ligação ao GTP
4.
Endocrinology ; 155(12): 4665-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25171599

RESUMO

Hyperglycemia stimulates secretion of αVß3 ligands from vascular cells, including endothelial cells, resulting in activation of the αVß3 integrin. This study determined whether blocking ligand occupancy of αVß3 would inhibit the development of diabetic nephropathy. Ten diabetic pigs received an F(ab)2 fragment of an antibody directed against the extracellular domain of the ß3-subunit, and 10 received a control IgG F(ab)2 for 18 weeks. Nondiabetic pigs excreted 115 ± 50 µg of protein/mg creatinine compared with control F(ab)2-treated diabetic animals (218 ± 57 µg/mg), whereas diabetic animals treated with the anti-ß3 F(ab)2 excreted 119 ± 55 µg/mg (P < .05). Mesangial volume/glomerular volume increased to 21 ± 2.4% in control-treated diabetic animals compared with 14 ± 2.8% (P < .01) in animals treated with active antibody. Diabetic animals treated with control F(ab)2 had significantly less glomerular podocin staining compared with nondiabetic animals, and this decrease was attenuated by treatment with anti-ß3 F(ab)2. Glomerular basement membrane thickness was increased in the control, F(ab)2-treated diabetic animals (212 ± 14 nm) compared with nondiabetic animals (170 ± 8.8 nm), but it was unchanged (159.9 ± 16.4 nm) in animals receiving anti-ß3 F(ab)2. Podocyte foot process width was greater in control, F(ab)2-treated, animals (502 ± 34 nm) compared with animals treated with the anti-ß3 F(ab)2 (357 ± 47 nm, P < .05). Renal ß3 tyrosine phosphorylation decreased from 13 934 ± 6437 to 6730 ± 1524 (P < .01) scanning units in the anti-ß3-treated group. We conclude that administration of an antibody that inhibits activation of the ß3-subunit of αVß3 that is induced by hyperglycemia attenuates proteinuria and early histologic changes of diabetic nephropathy, suggesting that it may have utility in preventing the progression of this disease complication.


Assuntos
Nefropatias Diabéticas/etiologia , Integrina alfaVbeta3/metabolismo , Animais , Anticorpos Monoclonais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Integrina alfaVbeta3/antagonistas & inibidores , Masculino , Camundongos Endogâmicos BALB C , Podócitos/patologia , Proteinúria/etiologia , Suínos
5.
Methods Mol Biol ; 874: 89-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22528442

RESUMO

The GPCR-coupled sphingosine-1-phosphate (S1P) receptors regulate a number of important cell -functions, including proliferation, migration, and adhesion. Since these processes require dynamic regulation of the actin cytoskeleton, the ability to monitor S1P-dependent activation of the Rho family GTPases is critical for our understanding of S1P signaling. Herein, we provide methods for the GST pull-down-based assay used to measure Rho, Rac, and Cdc42 activity in cultured cells treated with S1P.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Proteínas rho de Ligação ao GTP/metabolismo , Ativação Enzimática , Imunofluorescência , Esfingosina/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 295(3): H1067-H1075, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18586895

RESUMO

Extensive evidence indicates that serum response factor (SRF) regulates muscle-specific gene expression and that myocardin family SRF cofactors are critical for smooth muscle cell differentiation. In a yeast two hybrid screen for novel SRF binding partners expressed in aortic SMC, we identified four and a half LIM domain protein 2 (FHL2) and confirmed this interaction by GST pull-down and coimmunoprecipitation assays. FHL2 also interacted with all three myocardin factors and enhanced myocardin and myocardin-related transcription factor (MRTF)-A-dependent transactivation of smooth muscle alpha-actin, SM22, and cardiac atrial natriuretic factor promoters in 10T1/2 cells. The expression of FHL2 increased myocardin and MRTF-A protein levels, and, importantly, this effect was due to an increase in protein stability not due to an increase in myocardin factor mRNA expression. Treatment of cells with proteasome inhibitors MG-132 and lactacystin strongly upregulated endogenous MRTF-A protein levels and resulted in a substantial increase in ubiquitin immunoreactivity in MRTF-A immunoprecipitants. Interestingly, the expression of FHL2 attenuated the effects of RhoA and MRTF-B on promoter activity, perhaps through decreased MRTF-B nuclear localization or decreased SRF-CArG binding. Taken together, these data indicate that myocardin factors are regulated by proteasome-mediated degradation and that FHL2 regulates SRF-dependent transcription by multiple mechanisms, including stabilization of myocardin and MRTF-A.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter/genética , Glutationa Transferase/metabolismo , Proteínas com Homeodomínio LIM , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA/biossíntese , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/metabolismo , Frações Subcelulares/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Transfecção , Ubiquitina/genética , Ubiquitina/fisiologia
7.
J Biol Chem ; 279(41): 42422-30, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15292266

RESUMO

Sphingosine 1-phosphate (S1P) is a lipid agonist that regulates smooth muscle cell (SMC) and endothelial cell functions by activating several members of the S1P subfamily of G-protein-coupled Edg receptors. We have shown previously that SMC differentiation is regulated by RhoA-dependent activation of serum response factor (SRF). Because S1P is a strong activator of RhoA, we hypothesized that S1P would stimulate SMC differentiation. Treatment of primary rat aortic SMC cells with S1P activated RhoA as measured by precipitation with a glutathione S-transferase-rhotekin fusion protein. In SMC and 10T1/2 cells, S1P treatment up-regulated the activities of several transiently transfected SMC-specific promoters, and these effects were inhibited by the Rho-kinase inhibitor, Y-27632. S1P also increased smooth muscle alpha-actin protein levels in SMC but had no effect on SRF binding to the smooth muscle alpha-actin CArG B element. Quantitative reverse transcriptase-PCR showed that S1P treatment of SMC or 10T1/2 cells did not increase the mRNA level of either of the recently identified SRF co-factors, myocardin or myocardin-related transcription factor-A (MRTF-A). MRTF-A protein was expressed highly in SMC and 10T1/2 cultures, and importantly the effects of S1P were inhibited by a dominant negative form of MRTF-A indicating that S1P may regulate the transcriptional activity of MRTF-A. Indeed, S1P treatment increased the nuclear localization of FLAG-MRTF-A, and the effect of MRTF-A overexpression on smooth muscle alpha-actin promoter activity was inhibited by dominant negative RhoA. S1P also stimulated SMC growth by activating the early growth response gene, c-fos. This effect was not attenuated by Y-27632 but could be inhibited by the MEK inhibitor, UO126. S1P enhanced SMC growth through ERK-mediated phosphorylation of the SRF co-factor, Elk-1, as measured by gel shift and Elk-1 activation assays. Taken together these results demonstrate that S1P activates multiple signaling pathways in SMC and regulates proliferation by ERK-dependent activation of Elk-1 and differentiation by RhoA-dependent activation of MRTF-A.


Assuntos
Lisofosfolipídeos/metabolismo , Miócitos de Músculo Liso/citologia , Fator de Resposta Sérica/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Transcrição/fisiologia , Amidas/farmacologia , Animais , Aorta/metabolismo , Proteínas Reguladoras de Apoptose , Western Blotting , Butadienos/farmacologia , Diferenciação Celular , Divisão Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Proteínas de Ligação ao GTP , Genes Dominantes , Genes Reporter , Glutationa Transferase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso/metabolismo , Células NIH 3T3 , Nitrilas/farmacologia , Proteínas Nucleares/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transfecção , Regulação para Cima , Proteínas Elk-1 do Domínio ets , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa