Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(14): 3505-3518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743485

RESUMO

NaV1.7 plays a crucial role in inducing and conducting action potentials in pain-transducing sensory nociceptor fibres, suggesting that NaV1.7 blockers could be effective non-opioid analgesics. While SCN9A is expressed in both sensory and autonomic neurons, its functional role in the autonomic system remains less established. Our single neuron rt-PCR analysis revealed that 82% of sympathetic neurons isolated from guinea-pig stellate ganglia expressed NaV1.7 mRNA, with NaV1.3 being the only other tetrodotoxin-sensitive channel expressed in approximately 50% of neurons. We investigated the role of NaV1.7 in conducting action potentials in postganglionic sympathetic nerves and in the sympathetic adrenergic contractions of blood vessels using selective NaV1.7 inhibitors. Two highly selective NaV1.7 blockers, GNE8493 and PF 05089771, significantly inhibited postganglionic compound action potentials by approximately 70% (P < 0.01), with residual activity being blocked by the NaV1.3 inhibitor, ICA 121431. Electrical field stimulation (EFS) induced rapid contractions in guinea-pig isolated aorta, pulmonary arteries, and human isolated pulmonary arteries via stimulation of intrinsic nerves, which were inhibited by prazosin or the NaV1 blocker tetrodotoxin. Our results demonstrated that blocking NaV1.7 with GNE8493, PF 05089771, or ST2262 abolished or strongly inhibited sympathetic adrenergic responses in guinea-pigs and human vascular smooth muscle. These findings support the hypothesis that pharmacologically inhibiting NaV1.7 could potentially reduce sympathetic and parasympathetic function in specific vascular beds and airways. KEY POINTS: 82% of sympathetic neurons isolated from the stellate ganglion predominantly express NaV1.7 mRNA. NaV1.7 blockers inhibit action potential conduction in postganglionic sympathetic nerves. NaV1.7 blockade substantially inhibits sympathetic nerve-mediated adrenergic contractions in human and guinea-pig blood vessels. Pharmacologically blocking NaV1.7 profoundly affects sympathetic and parasympathetic responses in addition to sensory fibres, prompting exploration into the broader physiological consequences of NaV1.7 mutations on autonomic nerve activity.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Animais , Cobaias , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Humanos , Masculino , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fibras Simpáticas Pós-Ganglionares/fisiologia , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Feminino , Artérias/fisiologia , Artérias/efeitos dos fármacos , Artérias/inervação , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Estrelado/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos
2.
J Physiol ; 601(6): 1139-1150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750759

RESUMO

The influence of NaV 1.9 on inflammatory mediator-induced activation of airway vagal nodose C-fibres was evaluated by comparing responses in wild-type versus NaV 1.9-/- mice. A single-cell RT-PCR analysis indicated that virtually all nodose C-fibre neurons expressed NaV 1.9 (SCN11A) mRNA. Using extracellular electrophysiological recordings in an isolated vagally innervated mouse trachea-lung preparation, it was noted that mediators acting via G protein-coupled receptors (PAR2), or ionotropic receptors (P2×3) were 70-85% less effective in evoking action potential discharge in the absence of NaV 1.9. However, there was no difference in action potential discharge between wild-type and NaV 1.9-/- when the stimulus was a rapid punctate mechanical stimulus. An analysis of the passive and active properties of isolated nodose neurons revealed no difference between neurons from wild-type and NaV 1.9-/- mice, with the exception of a modest difference in the duration of the afterhyperpolarization. There was also no difference in the amount of current required to evoke action potentials (rheobase) or the action potential voltage threshold. The inward current evoked by the chemical mediator by a P2×3 agonist was the same in wild-type versus NaV 1.9-/- neurons. However, the current was sufficient to evoke action potential only in the wild-type neurons. The data support the speculation that NaV 1.9 could be an attractive therapeutic target for inflammatory airway disease by selectively inhibiting inflammatory mediator-associated vagal C-fibre activation. KEY POINTS: Inflammatory mediators were much less effective in activating the terminals of vagal airway C-fibres in mice lacking NaV 1.9. The active and passive properties of nodose neurons were the same between wild-type neurons and NaV 1.9-/- neurons. Nerves lacking NaV 1.9 responded, normally, with action potential discharge to rapid punctate mechanical stimulation of the terminals or the rapid stimulation of the cell bodies with inward current injections. NaV 1.9 channels could be an attractive target to selectively inhibit vagal nociceptive C-fibre activation evoked by inflammatory mediators without blocking the nerves' responses to the potentially hazardous stimuli associated with aspiration.


Assuntos
Pulmão , Nervo Vago , Animais , Camundongos , Nervo Vago/fisiologia , Pulmão/fisiologia , Neurônios , Potenciais de Ação/fisiologia , Traqueia/inervação , Gânglio Nodoso/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.9
3.
J Physiol ; 600(12): 2953-2971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430729

RESUMO

The KV 1/D-type potassium current (ID ) is an important determinant of neuronal excitability. This study explored whether and how ID channels regulate the activation of bronchopulmonary vagal afferent nerves. The single-neuron RT-PCR assay revealed that nearly all mouse bronchopulmonary nodose neurons expressed the transcripts of α-dendrotoxin (α-DTX)-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits, with the expression of KV 1.6 being most prevalent. Patch-clamp recordings showed that ID , defined as the α-DTX-sensitive K+ current, activated at voltages slightly more negative than the resting membrane potential in lung-specific nodose neurons and displayed little inactivation at subthreshold voltages. Inhibition of ID channels by α-DTX depolarized the lung-specific nodose neurons and caused an increase in input resistance, decrease in rheobase, as well as increase in action potential number and firing frequency in response to suprathreshold current steps. Application of α-DTX to the lungs via trachea in the mouse ex vivo vagally innervated trachea-lungs preparation led to action potential discharges in nearly half of bronchopulmonary nodose afferent nerve fibres, including nodose C-fibres, as detected by the two-photon microscopic Ca2+ imaging technique and extracellular electrophysiological recordings. In conclusion, ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves by stabilizing the membrane potential, counterbalancing the subthreshold depolarization and promoting the adaptation of action potential firings. Down-regulation of ID channels, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway diseases that are associated with excessive coughing, dyspnoea, and reflex bronchospasm and secretions. KEY POINTS: The α-dendrotoxin (α-DTX)-sensitive D-type K+ current (ID ) is an important determinant of neuronal excitability. Nearly all bronchopulmonary nodose afferent neurons in the mouse express ID and the transcripts of α-DTX-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits. Inhibition of ID channels by α-DTX depolarizes the bronchopulmonary nodose neurons, reduces the minimal depolarizing current needed to evoke an action potential (AP) and increases AP number and AP firing frequency in response to suprathreshold stimulations. Application of α-DTX to the lungs ex vivo elicits AP discharges in about half of bronchopulmonary nodose C-fibre terminals. Our novel finding that ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves suggests that their down-regulation, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway inflammation associated with excessive respiratory symptoms.


Assuntos
Canais de Potássio , Nervo Vago , Potenciais de Ação/fisiologia , Animais , Potenciais da Membrana/fisiologia , Camundongos , Neurônios Aferentes , Gânglio Nodoso , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Nervo Vago/fisiologia
4.
Nature ; 519(7542): 237-41, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25517090

RESUMO

Mast cells are primary effectors in allergic reactions, and may have important roles in disease by secreting histamine and various inflammatory and immunomodulatory substances. Although they are classically activated by immunoglobulin (Ig)E antibodies, a unique property of mast cells is their antibody-independent responsiveness to a range of cationic substances, collectively called basic secretagogues, including inflammatory peptides and drugs associated with allergic-type reactions. The pathogenic roles of these substances have prompted a decades-long search for their receptor(s). Here we report that basic secretagogues activate mouse mast cells in vitro and in vivo through a single receptor, Mrgprb2, the orthologue of the human G-protein-coupled receptor MRGPRX2. Secretagogue-induced histamine release, inflammation and airway contraction are abolished in Mrgprb2-null mutant mice. Furthermore, we show that most classes of US Food and Drug Administration (FDA)-approved peptidergic drugs associated with allergic-type injection-site reactions also activate Mrgprb2 and MRGPRX2, and that injection-site inflammation is absent in mutant mice. Finally, we determine that Mrgprb2 and MRGPRX2 are targets of many small-molecule drugs associated with systemic pseudo-allergic, or anaphylactoid, reactions; we show that drug-induced symptoms of anaphylactoid responses are significantly reduced in knockout mice; and we identify a common chemical motif in several of these molecules that may help predict side effects of other compounds. These discoveries introduce a mouse model to study mast cell activation by basic secretagogues and identify MRGPRX2 as a potential therapeutic target to reduce a subset of drug-induced adverse effects.


Assuntos
Hipersensibilidade a Drogas/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/prevenção & controle , Feminino , Células HEK293 , Liberação de Histamina , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L192-L199, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664854

RESUMO

We evaluated the mechanisms underlying protease-activated receptor 1 (PAR1)-mediated activation of nodose C-fibers in mouse lungs. The PAR1-induced action potential discharge at the terminals was strongly inhibited in phospholipase C-ß3 (PLCß3)-deficient animals. At the level of the cell soma, PAR1 activation led to an increase in cytosolic calcium that was largely inhibited by transient receptor potential (TRP) A1 antagonism. Patch-clamp recordings, however, revealed that neither TRPA1 nor TRPV1 or any other ruthenium red-sensitive ion channels are required for the PAR1-mediated inward current or membrane depolarization in isolated nodose neurons. Consistent with these findings, PAR1-mediated action potential discharge in mouse lung nodose C-fiber terminals was unaltered in Trpa1/Trpv1 double-knockout animals and Trpc3/Trpc6 double-knockout animals. The activation of the C-fibers was also not inhibited by ruthenium red at concentrations that blocked TRPV1- and TRPA1-dependent responses. The biophysical data show that PAR1/Gq-mediated activation of nodose C-fibers may involve multiple ion channels downstream from PLCß3 activation. TRPA1 is an ion channel that participates in PAR1/Gq-mediated elevation in intracellular calcium. There is little evidence, however, that TRPA1, TRPV1, TRPC3, TRPC6, or other ruthenium red-sensitive TRP channels are required for PAR1/Gq-PLCß3-mediated membrane depolarization and action potential discharge in bronchopulmonary nodose C-fibers in the mouse.


Assuntos
Pulmão/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Receptor PAR-1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação/fisiologia , Animais , Brônquios/metabolismo , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gânglio Nodoso/metabolismo , Fosfolipase C beta/metabolismo , Células Receptoras Sensoriais/metabolismo
6.
J Physiol ; 597(7): 2007-2019, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793318

RESUMO

KEY POINTS: Sphingosine-1-phosphate (S1P) strongly activates mouse vagal C-fibres in the airways. Airway-specific nodose and jugular C-fibre neurons express mRNA coding for the S1P receptor S1PR3. S1P activation of nodose C-fibres is inhibited by a S1PR3 antagonist. S1P activation of nodose C-fibres does not occur in S1PR3 knockout mice. ABSTRACT: We evaluated the effect of sphingosine-1-phosphate (S1P), a lipid that is elevated during airway inflammatory conditions like asthma, for its ability to stimulate vagal afferent C-fibres in mouse lungs. Single cell RT-PCR on lung-specific vagal afferent neurons revealed that both TRPV1-expressing and TRPV1-non-expressing nodose neurons express mRNA coding for the S1P receptor S1PR3. TRPV1-expressing airway-specific jugular ganglion neurons also express S1PR3 mRNA. S1PR1 and S1PR2 mRNAs were also found to be expressed but only in a limited subset (32% and 22%, respectively) of airway-specific vagal sensory neurons; whereas S1PR4 and S1PR5 were rarely expressed. We used large scale two-photon imaging of the nodose ganglia from our ex vivo preparation isolated from Pirt-Cre;R26-GCaMP6s transgenic mice, which allows for simultaneous monitoring of calcium transients in ∼1000 neuronal cell bodies in the ganglia during tracheal perfusion with S1P (10 µM). We found that S1P in the lungs strongly activated 81.5% of nodose fibres, 70% of which were also activated by capsaicin. Single fibre electrophysiological recordings confirmed that S1P evoked action potential (AP) generation in a concentration-dependent manner (0.1-10 µM). Action potential generation by S1P in nodose C-fibres was effectively inhibited by the S1PR3 antagonist TY 52156 (10 µM). Finally, in S1PR3 knockout mice, S1P was not able to activate any of the airway nodose C-fibres analysed. These results support the hypothesis that S1P may play a role in evoking C-fibre-mediated airway sensations and reflexes that are associated with airway inflammatory diseases.


Assuntos
Lisofosfolipídeos/farmacologia , Células Receptoras Sensoriais/fisiologia , Receptores de Esfingosina-1-Fosfato/fisiologia , Esfingosina/análogos & derivados , Nervo Vago/citologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/genética
7.
Pulm Pharmacol Ther ; 56: 15-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872160

RESUMO

Activation of vagal C-fibers is likely involved in some types of pathological coughing, especially coughing that is associated with airway inflammation. This is because stimulation of vagal C-fibers leads to strong urge to cough sensations, and because C-fiber terminals can be strongly activated by mediators associated with airway inflammation. The most direct manner in which a given mediator can activate a C-fiber terminal is through interacting with its receptor expressed in the terminal membrane. The agonist-receptor interaction then must lead to the opening (or potentially closing) of ion channels that lead to a membrane depolarization. This depolarization is referred to as a generator potential. If, and only if, the generator potential reaches the voltage necessary to activate voltage-gated sodium channels, action potentials are initiated and conducted to the central terminals within the CNS. Therefore, there are three target areas to block the inflammatory mediator induced activation of C-fiber terminals. First, at the level of the mediator-receptor interaction, secondly at the level of the generator potential, and third at the level of the voltage-gated sodium channels. Here we provide a brief overview of each of these therapeutic strategies.


Assuntos
Antitussígenos/farmacologia , Tosse/tratamento farmacológico , Fibras Nervosas Amielínicas/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Tosse/fisiopatologia , Humanos , Fibras Nervosas Amielínicas/metabolismo , Nervo Vago/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
8.
J Pharmacol Exp Ther ; 361(1): 172-180, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138042

RESUMO

Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.


Assuntos
Gânglios Parassimpáticos/fisiologia , Pulmão/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Fibras Parassimpáticas Pós-Ganglionares/fisiologia , Transmissão Sináptica/fisiologia , Animais , Relação Dose-Resposta a Droga , Gânglios Parassimpáticos/efeitos dos fármacos , Cobaias , Células HEK293 , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Técnicas de Cultura de Órgãos , Fibras Parassimpáticas Pós-Ganglionares/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos
9.
Physiol Rep ; 11(24): e15900, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38123162

RESUMO

Respiratory viral infection can lead to activation of sensory afferent nerves as indicated by the consequential sore throat, sneezing, coughing, and reflex secretions. In addition to causing troubling symptoms, sensory nerve activation likely accelerates viral spreading. The mechanism how viruses activate sensory nerve terminals during infection is unknown. In this study, we investigate whether coronavirus spike protein activates sensory nerves terminating in the airways. We used isolated vagally-innervated mouse trachea-lung preparation for two-photon microscopy and extracellular electrophysiological recordings. Using two-photon Ca2+ imaging, we evaluated a total number of 786 vagal bronchopulmonary nerves in six experiments. Approximately 49% of the sensory fibers were activated by S1 protein (4 µg/mL intratracheally). Extracellular nerve recording showed the S1 protein evoked action potential discharge in sensory C-fibers; of 39 airway C-fibers (one fiber per mouse), 17 were activated. Additionally, Fura-2 Ca2+ imaging was performed on neurons dissociated from vagal sensory ganglia (n = 254 from 22 mice). The result showed that 63% of neurons responded to S1 protein. SARS-CoV-2 S1 protein can lead to direct activation of sensory C-fiber nerve terminals in the bronchopulmonary tract. Direct activation of C-fibers may contribute to coronavirus symptoms, and amplify viral spreading in a population.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , Nervo Vago/fisiologia , Pulmão/fisiologia
10.
J Physiol ; 590(21): 5449-59, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22907059

RESUMO

Abstract The effect of serotonin on capsaicin-sensitive vagal C-fibre afferent nerves was evaluated in an ex vivo vagally innervated mouse lung preparation. Action potentials arising from receptive fields in the lungs were recorded with an extracellular electrode positioned in the nodose/jugular ganglion. Among the 62 capsaicin-sensitive C-fibres studied (conduction velocity ∼0.5 m s(-1)), 71% were of the nodose phenotype and 29% of the jugular phenotype. The nodose C-fibres responded strongly to serotonin and this effect was blocked with the 5-HT3-receptor antagonist ondansetron. Using single cell RT-PCR, we noted that the vast majority of nodose neurons retrogradely labelled from the lung, expressed 5-HT3 receptor mRNA. The jugular C-fibres also responded strongly to serotonin with action potential discharge, but this effect was not inhibited by ondansetron. Lung-specific jugular neurons did not express 5-HT3 receptor mRNA but frequently expressed 5-HT1 or 5-HT4 receptor mRNA. Mast cells are the major source of serotonin in healthy murine airways. Ovalbumin-induced mast cell activation in actively sensitized lungs caused action potential discharge in jugular but not nodose C-fibres. The data show that vagal C-fibres in the respiratory tract of the mouse are strongly activated by serotonin. Depending on the C-fibre subtype both 5-HT3 and non-5-HT3 mechanisms are involved.


Assuntos
Alérgenos/farmacologia , Pulmão/efeitos dos fármacos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Ovalbumina/farmacologia , Serotonina/farmacologia , Animais , Células Cultivadas , Liberação de Histamina , Pulmão/inervação , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Amielínicas/fisiologia , Neurônios , Receptores de Serotonina/fisiologia , Nervo Vago/fisiologia
11.
Am J Physiol Lung Cell Mol Physiol ; 302(9): L941-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345578

RESUMO

We addressed the hypothesis that allergic inflammation in guinea pig airways leads to a phenotypic switch in vagal tracheal cough-causing, low-threshold mechanosensitive Aδ neurons, such that they begin expressing functional transient receptor potential vanilloid (TRPV1) channels. Guinea pigs were actively sensitized to ovalbumin (OVA) and beginning 21 days later exposed via aerosol to OVA daily for 3 days. Tracheal-specific neurons were identified in the nodose ganglion using retrograde tracing techniques. Tracheal specific neurons were isolated, and mRNA expression was evaluated at the single-neuron level using RT-PCR analysis. Electrophysiological studies have revealed that the vast majority of vagal nodose afferent nerves innervating the trachea are capsaicin-insensitive Aδ-fibers. Consistent with this, we found <20% of these neurons express TRPV1 mRNA or respond to capsaicin in a calcium assay. Allergen exposure induced de novo TRPV1 mRNA in a majority of the tracheal-specific nodose neurons (P < 0.05). The allergen-induced TRPV1 induction was mimicked by applying either brain-derived neurotrophic factor (BDNF) or glial-derived neurotrophic factor (GDNF) to the tracheal lumen. The BDNF-induced phenotypic change observed at the level of mRNA expression was mimicked using a calcium assay to assess functional TRPV1 ion channels. Finally, OVA exposure induced BDNF and GDNF production in the tracheal epithelium, the immediate vicinity of the nodose Aδ -fibers terminations. The induction of TRPV1 in nodose tracheal Aδ -fibers would substantively expand the nature of stimuli capable of activating these cough-causing nerves.


Assuntos
Alérgenos/imunologia , Mecanorreceptores/metabolismo , Gânglio Nodoso/patologia , Ovalbumina/imunologia , Canais de Cátion TRPV/metabolismo , Traqueia/inervação , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sinalização do Cálcio , Células Cultivadas , Expressão Gênica , Perfilação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Cobaias , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Fator de Crescimento Neural/fisiologia , Neurônios/metabolismo , Gânglio Nodoso/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única , Canais de Cátion TRPV/genética , Traqueia/imunologia , Traqueia/patologia
12.
Eur J Pharmacol ; 907: 174192, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010618

RESUMO

Our previous studies implicated the voltage-gated sodium channel subtype NaV 1.7 in the transmission of action potentials by the vagal afferent nerves regulating cough and thus identified this channel as a rational therapeutic target for antitussive therapy. But it is presently unclear whether a systemically administered small molecule inhibitor of NaV 1.7 conductance can achieve therapeutic benefit in the absence of side effects on cardiovascular function, gastrointestinal motility or respiration. To this end, we have evaluated the antitussive effects of the NaV 1.7 selective blocker Compound 801 administered systemically in awake guinea pigs or administered topically in anesthetized guinea pigs. We also evaluated the antitussive effects of ambroxol, a low affinity NaV blocker modestly selective for tetrodotoxin resistant NaV subtypes. Both Compound 801 and ambroxol dose-dependently inhibited action potential conduction in guinea pig vagus nerves (assessed by compound potential), with ambroxol nearly 100-fold less potent than the NaV 1.7 selective Compound 801 in this and other NaV 1.7-dependent guinea pig and human tissue-based assays. Both drugs also inhibited citric acid evoked coughing in awake or anesthetized guinea pigs, with potencies supportive of an NaV 1.7-dependent mechanism. Notably, however, the antitussive effects of systemically administered Compound 801 were accompanied by hypotension and respiratory depression. Given the antitussive effects of topically administered Compound 801, we speculate that the likely insurmountable side effects on blood pressure and respiratory drive associated with systemic dosing make topical formulations a viable and perhaps unavoidable therapeutic strategy for targeting NaV 1.7 in cough.


Assuntos
Antitussígenos , Canais de Sódio Disparados por Voltagem , Animais , Cobaias
13.
J Physiol ; 588(Pt 7): 1171-7, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20142268

RESUMO

The nature of protease-activated receptors (PARs) capable of activating respiratory vagal C-fibres in the mouse was investigated. Infusing thrombin or trypsin via the trachea strongly activated vagal lung C-fibres with action potential discharge, recorded with the extracellular electrode positioned in the vagal sensory ganglion. The intensity of activation was similar to that observed with the TRPV1 agonist, capsaicin. This was mimicked by the PAR1-activating peptide TFLLR-NH(2), whereas the PAR2-activating peptide SLIGRL-NH(2) was without effect. Patch clamp recording on cell bodies of capsaicin-sensitive neurons retrogradely labelled from the lungs revealed that TFLLR-NH(2) consistently evokes a large inward current. RT-PCR revealed all four PARs were expressed in the vagal ganglia. However, when RT-PCR was carried out on individual neurons retrogradely labelled from the lungs it was noted that TRPV1-positive neurons (presumed C-fibre neurons) expressed PAR1 and PAR3, whereas PAR2 and PAR4 were rarely expressed. The C-fibres in mouse lungs isolated from PAR1(-/-) animals responded normally to capsaicin, but failed to respond to trypsin, thrombin, or TFLLR-NH(2). These data show that the PAR most relevant for evoking action potential discharge in vagal C-fibres in mouse lungs is PAR1, and that this is a direct neuronal effect.


Assuntos
Pulmão/inervação , Fibras Nervosas Amielínicas/fisiologia , Receptor PAR-1/fisiologia , Trombina/fisiologia , Tripsina/fisiologia , Nervo Vago/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Animais , Capsaicina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/efeitos dos fármacos , Oligopeptídeos/fisiologia , Receptor PAR-1/agonistas , Receptor PAR-1/genética , Receptores de Trombina/efeitos dos fármacos , Receptores de Trombina/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Trombina/farmacologia , Tripsina/farmacologia , Nervo Vago/efeitos dos fármacos
14.
J Physiol ; 587(Pt 13): 3355-62, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19403609

RESUMO

We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction.


Assuntos
Fibras Colinérgicas/fisiologia , Mastócitos/fisiologia , Traqueia/inervação , Traqueia/fisiologia , Animais , Atropina/farmacologia , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/fisiologia , Fenômenos Eletrofisiológicos , Liberação de Histamina , Técnicas In Vitro , Ketanserina/farmacologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/imunologia , Contração Muscular/fisiologia , Ovalbumina/imunologia , Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/imunologia
15.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30721152

RESUMO

Increased airway vagal sensory C-fiber activity contributes to the symptoms of inflammatory airway diseases. The KCNQ/Kv7/M-channel is a well-known determinant of neuronal excitability, yet whether it regulates the activity of vagal bronchopulmonary C-fibers and airway reflex sensitivity remains unknown. Here we addressed this issue using single-cell RT-PCR, patch clamp technique, extracellular recording of single vagal nerve fibers innervating the mouse lungs, and telemetric recording of cough in free-moving mice. Single-cell mRNA analysis and biophysical properties of M-current (IM) suggest that KCNQ3/Kv7.3 is the major M-channel subunit in mouse nodose neurons. The M-channel opener retigabine negatively shifted the voltage-dependent activation of IM, leading to membrane hyperpolarization, increased rheobase, and suppression of both evoked and spontaneous action potential (AP) firing in nodose neurons in an M-channel inhibitor XE991-sensitive manner. Retigabine also markedly suppressed the α,ß-methylene ATP-induced AP firing in nodose C-fiber terminals innervating the mouse lungs, and coughing evoked by irritant gases in awake mice. In conclusion, KCNQ/M-channels play a role in regulating the excitability of vagal airway C-fibers at both the cell soma and nerve terminals. Drugs that open M-channels in airway sensory afferents may relieve the sufferings associated with pulmonary inflammatory diseases such as chronic coughing.


Assuntos
Tosse/metabolismo , Canais de Potássio KCNQ/metabolismo , Nervo Vago/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Antracenos/farmacologia , Carbamatos/farmacologia , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas do Tecido Nervoso/genética , Gânglio Nodoso , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , RNA Mensageiro , Transcriptoma
16.
J Physiol ; 586(5): 1321-36, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18187475

RESUMO

Lung vagal sensory fibres are broadly categorized as C fibres (nociceptors) and A fibres (non-nociceptive; rapidly and slowly adapting low-threshold stretch receptors). These afferent fibre types differ in degree of myelination, conduction velocity, neuropeptide content, sensitivity to chemical and mechanical stimuli, as well as evoked reflex responses. Recent studies in nociceptive fibres of the somatosensory system indicated that the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channels (VGSC) are preferentially expressed in the nociceptive fibres of the somatosensory system (dorsal root ganglia). Whereas TTX-R sodium currents have been documented in lung vagal sensory nerves fibres, a rigorous comparison of their expression in nociceptive versus non-nociceptive vagal sensory neurons has not been carried out. Using multiple approaches including patch clamp electrophysiology, immunohistochemistry, and single-cell gene expression analysis in the guinea pig, we obtained data supporting the hypothesis that the TTX-R sodium currents are similarly distributed between nodose ganglion A-fibres and C-fibres innervating the lung. Moreover, mRNA and immunoreactivity for the TTX-R VGSC molecules Na(V)1.8 and Na(V)1.9 were present in nearly all neurons. We conclude that contrary to findings in the somatosensory neurons, TTX-R VGSCs are not preferentially expressed in the nociceptive C-fibre population innervating the lungs.


Assuntos
Pulmão/inervação , Neurônios Aferentes/metabolismo , Nociceptores/metabolismo , Gânglio Nodoso/metabolismo , Receptores Pulmonares de Alongamento/metabolismo , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/metabolismo , Cobaias , Masculino , Neurônios Aferentes/citologia , Gânglio Nodoso/citologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/genética , Tetrodotoxina/farmacologia , Traqueia/inervação
17.
PLoS One ; 6(5): e20559, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655234

RESUMO

Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt(-/-) mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Prurido/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Prurido/induzido quimicamente , Prurido/genética , Transdução de Sinais/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
J Pharmacol Exp Ther ; 304(3): 1275-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12604706

RESUMO

Using single-unit extracellular recording techniques, we have examined the role of the vanilloid receptor-1 (VR1 aka TRPV1) in bradykinin-induced activation of vagal afferent C-fiber receptive fields in guinea pig isolated airways. Of 17 airway C-fibers tested, 14 responded to bradykinin and capsaicin, 2 fibers responded to neither capsaicin nor bradykinin, and 1 fiber responded to capsaicin but not bradykinin. Thus, every bradykinin-responsive C-fiber was also responsive to capsaicin. Bradykinin (200 microl of 0.3 microM solution) evoked a burst of approximately 130 action potentials in C-fibers. In the presence of the TRPV1 antagonist capsazepine (10 microM), bradykinin evoked 83 +/- 9% (n = 6; P < 0.01) fewer action potentials. Similarly, the TRPV1 blocker, ruthenium red (10 microM), inhibited the number of bradykinin-evoked action potentials by 75 +/- 10% (n = 4; P < 0.05). In the presence of 5,8,11,14-eicosatetraynoic acid (10 microM), an inhibitor of lipoxygenase and cyclooxygenase enzymes, the number of bradykinin-induced action potentials was reduced by 76 +/- 10% (n = 6; P < 0.05). Similarly, a combination of the 12-lipoxygenase inhibitor, baicalein (10 microM) and the 5-lipoxygenase inhibitor ZD2138 [6-[3-fluoro-5-[4-methoxy-3,4,5,6-tetrahydro-2H-pyran-4-yl])phenoxy-methyl]-1-methyl-2-quinolone] (10 microM) caused significant inhibition of bradykinin-induced responses. Our data suggest a role for lipoxygenase products in bradykinin B(2) receptor-induced activation of TRPV1 in the peripheral terminals of afferent C-fibers within guinea pig trachea.


Assuntos
Corpos Aórticos/fisiologia , Neurônios Aferentes/fisiologia , Receptores de Droga/fisiologia , Animais , Bradicinina/fisiologia , Capsaicina/farmacologia , Cobaias , Lipoxigenase/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Rutênio Vermelho/farmacologia
19.
J Physiol ; 557(Pt 2): 543-58, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15004208

RESUMO

We have identified the tracheal and laryngeal afferent nerves regulating cough in anaesthetized guinea-pigs. Cough was evoked by electrical or mechanical stimulation of the tracheal or laryngeal mucosa, or by citric acid applied topically to the trachea or larynx. By contrast, neither capsaicin nor bradykinin challenges to the trachea or larynx evoked cough. Bradykinin and histamine administered intravenously also failed to evoke cough. Electrophysiological studies revealed that the majority of capsaicin-sensitive afferent neurones (both Adelta- and C-fibres) innervating the rostral trachea and larynx have their cell bodies in the jugular ganglia and project to the airways via the superior laryngeal nerves. Capsaicin-insensitive afferent neurones with cell bodies in the nodose ganglia projected to the rostral trachea and larynx via the recurrent laryngeal nerves. Severing the recurrent nerves abolished coughing evoked from the trachea and larynx whereas severing the superior laryngeal nerves was without effect on coughing. The data indicate that the tracheal and laryngeal afferent neurones regulating cough are polymodal Adelta-fibres that arise from the nodose ganglia. These afferent neurones are activated by punctate mechanical stimulation and acid but are unresponsive to capsaicin, bradykinin, smooth muscle contraction, longitudinal or transverse stretching of the airways, or distension. Comparing these physiological properties with those of intrapulmonary mechanoreceptors indicates that the afferent neurones mediating cough are quite distinct from the well-defined rapidly and slowly adapting stretch receptors innervating the airways and lungs. We propose that these airway afferent neurones represent a distinct subtype and that their primary function is regulation of the cough reflex.


Assuntos
Tosse/fisiopatologia , Nervos Laríngeos/fisiopatologia , Neurônios Aferentes/fisiologia , Traqueia/fisiopatologia , Anestesia , Animais , Bradicinina , Capsaicina , Ácido Cítrico , Tosse/induzido quimicamente , Estimulação Elétrica , Eletrofisiologia , Cobaias , Histamina/farmacologia , Nervos Laríngeos/efeitos dos fármacos , Masculino , Mecanorreceptores/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/fisiopatologia , Respiração , Estimulação Química , Traqueia/efeitos dos fármacos , Traqueia/inervação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa