Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(20): e2306434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38152953

RESUMO

MXenes, with their remarkable attributes, stand at the forefront of diverse applications. However, the challenge remains in sustaining their performance, especially concerning Ti3C2Tx MXene electrodes. Current self-healing techniques, although promising, often rely heavily on adjacent organic materials. This study illuminates a pioneering water-initiated self-healing mechanism tailored specifically for standalone MXene electrodes. Here, both water and select organic solvents seamlessly mend impaired regions. Comprehensive evaluations around solvent types, thermal conditions, and substrate nuances underline water's unmatched healing efficacy, attributed to its innate ability to forge enduring hydrogen bonds with MXenes. Optimal healing environments range from ambient conditions to a modest 50 °C. Notably, on substrates rich in hydroxyl groups, the healing efficiency remains consistently high. The proposed healing mechanism encompasses hydrogen bonding formation, capillary action-induced expansion of interlayer spacing, solvent lubrication, Gibbs free energy minimizing MXene nanosheet rearrangement, and solvent evaporation-triggered MXene layer recombination. MXenes' resilience is further showcased by their electrical revival from profound damages, culminating in the crafting of Joule-heated circuits and heaters.

2.
Nanotechnology ; 31(38): 385501, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32498051

RESUMO

The present study investigates the piezoresistive properties of polycrystalline MoS2 film for strain-sensing applications. The gauge factor (GF) of the flexible MoS2 device (MoS2/PET) has been calculated to be 102 ± 5 in the stress range from ~7 MPa to ~14 MPa. In addition, to improve the sensing stress range, the flexible strain sensors are encapsulated by SU-8. The effect of encapsulation layer thickness is reflected in the GF, which is attributed to the shifting of the neutral axis. However, the calculated GF is constant in the higher stress range, 80 ± 2 and 12 ± 1 for 2 µm and 10 µm thick SU-8, respectively. Herein, we report a cost-effective and scalable approach to fabricate large-area polycrystalline MoS2-based flexible sensors for a wider stress range. The encapsulated devices remained undistorted and intact for stress values beyond 14 MPa. Further, we demonstrate the durability of the fabricated sensors with body movements, such as hand gestures, for all the three types of strain sensor.

3.
Phys Chem Chem Phys ; 17(7): 5227-35, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25601432

RESUMO

For the design and development of organic electronic devices, the main focus is particularly on the synthesis of new organic semiconductors and dielectric materials. Molecular engineering is another effective strategy, in this direction which has been explored successfully in this study through synthesis of a π-conjugated oligomer CbzTPAU2, with Mw = 2169. This bow shaped oligomer has its core unit made of 2,7-disubstituted carbazole which further has been connected to its end-terminal unit TPAU2 by 1,4-bis(decyloxy)-2,5-diethynylbenzene. The presence of a uracil moiety on end terminals of CbzTPAU2 has triggered the self-assembly of CbzTPAU2 molecules through knitting up of each of these single units through four Uracil-Uracil intermolecular hydrogen bonds (UU) per CbzTPAU2 unit. An Atomic Force Microscope (AFM) study was employed to explore the directionality of hydrogen bonding. Further, the effect of solvent polarity on the stability of UU bonding in CbzTPAU2 oligomers has also been reported here in this study. The potential of these self-assembled CbzTPAU2 oligomers when explored as charge transporting layers in OTFTs has shown p-type behaviour. The OTFT device bottom-gate, top-contact when fabricated on the heavily doped n-type Si wafer with SiO2 as a gate dielectric (200 nm) has shown a good on/off ratio 3.43 × 10(3) and with an average hole mobility of 0.167 cm(2) V(-1) s(-1).

4.
ACS Appl Mater Interfaces ; 15(24): 29486-29498, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37296075

RESUMO

The increasing prevalence of health problems stemming from sedentary lifestyles and evolving workplace cultures has placed a substantial burden on healthcare systems. Consequently, remote health wearable monitoring systems have emerged as essential tools to track individuals' health and well-being. Self-powered triboelectric nanogenerators (TENGs) have exhibited significant potential for use as emerging detection devices capable of recognizing body movements and monitoring breathing patterns. However, several challenges remain to be addressed in order to fulfill the requirements for self-healing ability, air permeability, energy harvesting, and suitable sensing materials. These materials must possess high flexibility, be lightweight, and have excellent triboelectric charging effects in both electropositive and electronegative layers. In this work, we investigated self-healable electrospun polybutadiene-based urethane (PBU) as a positive triboelectric layer and titanium carbide (Ti3C2Tx) MXene as a negative triboelectric layer for the fabrication of an energy-harvesting TENG device. PBU consists of maleimide and furfuryl components as well as hydrogen bonds that trigger the Diels-Alder reaction, contributing to its self-healing properties. Moreover, this urethane incorporates a multitude of carbonyl and amine groups, which create dipole moments in both the stiff and the flexible segments of the polymer. This characteristic positively influences the triboelectric qualities of PBU by facilitating electron transfer between contacting materials, ultimately resulting in high output performance. We employed this device for sensing applications to monitor human motion and breathing pattern recognition. The soft and fibrous-structured TENG generates a high and stable open-circuit voltage of up to 30 V and a short-circuit current of 4 µA at an operation frequency of 4.0 Hz, demonstrating remarkable cyclic stability. A significant feature of our TENG is its self-healing ability, which allows for the restoration of its functionality and performance after sustaining damage. This characteristic has been achieved through the utilization of the self-healable PBU fibers, which can be repaired via a simple vapor solvent method. This innovative approach enables the TENG device to maintain optimal performance and continue functioning effectively even after multiple uses. After integration with a rectifier, the TENG can charge various capacitors and power 120 LEDs. Moreover, we employed the TENG as a self-powered active motion sensor, attaching it to the human body to monitor various body movements for energy-harvesting and sensing purposes. Additionally, the device demonstrates the capability to recognize breathing patterns in real time, offering valuable insights into an individual's respiratory health.


Assuntos
Movimento , Uretana , Humanos , Amidas , Carbamatos , Movimento (Física) , Fenômenos Físicos
5.
Mater Today Bio ; 19: 100565, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36816602

RESUMO

Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.

6.
ACS Appl Mater Interfaces ; 15(6): 8393-8405, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731140

RESUMO

Ti3C2Tx MXene, a two-dimensional transition metal carbide, has attracted substantial interest due to its unique physical properties and a wide range of potential applications. Although the properties of devices using MXene have been substantially enhanced in recent years, it is not fully understood how the oxygen concentration in Ti3AlC2 MAX affects oxide formation in Ti3C2-based MXene nanosheets and their fundamental properties. To this end, we compared two types of MAX phases: MAX with low oxygen content (LO-MAX) and MAX synthesized by a conventional process. Since the conventional MAX synthesis employs metal (Ti) as a primary material, it is referred to as metal-based MAX (MB-MAX) from here. The oxygen content of the LO-MAX was only 0.56 wt %, which was about 20% compared to that of MAX synthesized using conventional methods. We compared the properties of MXene nanosheets prepared from the LO-MAX with MXene nanosheets obtained from the MB-MAX. Microscopic and chemical analyses revealed smooth and wrinkle-free morphology and small amounts of oxygen in MXene nanosheets prepared from LO-MAX (LO-MXene). The LO-MXene nanosheet film exhibited an exceptionally high conductivity of 10,540 S/cm and an ultralow surface roughness of 1.7 nm, which originated from inhibited surface oxide formation. Moreover, the inhibition of oxide formation strengthened the function of -O or -OH groups on the surface of MXene, thereby facilitating strong hydrogen bonding to the polymer with hydroxyl groups. To clearly reveal these properties, we prepared a pressure sensor by coating these MXene nanosheets on nylon/polyester fibers. The fabricated sensor exhibited a high sensitivity of up to 85.6/kPa and excellent stretch stability and reliability. These results clearly revealed that lowering the oxygen content in MAX can make a decisive contribution to improving the fundamental properties of MXene nanosheets prepared therefrom.

7.
J Nanosci Nanotechnol ; 11(8): 6858-67, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103091

RESUMO

Fully flexible metal-insulator-metal (MIM) capacitors fabricated on 25 microm thin polyimide (PI) substrates via the surface sol-gel process using 10-nm-thick zirconium-silicate (ZrSixOy) and hafnium-silicate (HfSimOn) films as gate dielectrics. The surface morphology of the ZrSixOy and HfSimOn films were investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free surface growth had occurred on the PI. Both the films treated with oxygen (O2) plasma and annealing (ca. 250 degrees C) consisted of amorphous phase; confirmed by X-ray diffraction. We employed X-ray photoelectron spectroscopy (XPS) at high resolution to examine the chemical composition of the films subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy revealed the O2 plasma-pretreatment followed by annealing was the most effective process to the surface oxidation at relatively low-temperature, for further passivate the grease traps and making dielectric films thermally stable. The ZrSixOy and HfSimOn films in sandwich-like MIM configuration on the PI substrates exhibited the low leakage current densities of 7.1 x 10(-9) and 8.4 x 10(-9) A/cm2 at applied electric field of 10 MV/cm and maximum capacitance densities of 7.5 and 5.3 fF/microm2 at 1 MHz, respectively. In addition, the ZrSixOy and HfSimOn films in MIM capacitors showed the estimated dielectric constants of 8.2 and 6.0, respectively. Prior to use of flexible MIM capacitors in advanced flexible electronic devices; the reliability test was studied by applying day-dependent leakage current density measurements up to 30 days. These films of silicate-surfactant mesostructured materials have special interest to be used as gate dielectrics in future for flexible metal-oxide-semiconductor devices.

8.
Phys Chem Chem Phys ; 12(11): 2582-9, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20200734

RESUMO

We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal (MIM) capacitor comprising a 10 nm-thick high-k thin dielectric HfO(2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfO(2) film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the film surface. After oxygen (O(2)) plasma pretreatment and subsequent annealing at 250 degrees C, the film on the PI substrate exhibited a low leakage current density of 3.64 x 10(-9) A cm(-2) at 5 V and a maximum capacitance density of 10.35 fF microm(-2) at 1 MHz. The as-deposited sol-gel film was completely oxidized when employing O(2) plasma at a relatively low temperature (ca. 250 degrees C), thereby enhancing the electrical performance. We employed X-ray photoelectron spectroscopy (XPS) at both high and low resolution to examine the chemical composition of the film subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy, revealed that O(2) plasma treatment was the most effective process for the complete oxidation of hafnium atoms at low temperature. A study of the insulator properties indicated the excellent bendability of our MIM capacitor; the flexible PI substrate could be bent up to 10(5) times and folded to near 360 degrees without any deterioration in its electrical performance.

10.
Nanoscale Res Lett ; 9(1): 526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278820

RESUMO

Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

11.
ACS Appl Mater Interfaces ; 4(6): 3261-9, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22667761

RESUMO

An organic-organic blend thin film has been synthesized through the solution deposition of a triblock copolymer (Pluronic P123, EO20-PO70-EO20) and polystyrene (PS), which is called P123-PS for the blend film whose precursor solution was obtained with organic additives. In addition to having excellent insulating properties, these materials have satisfied other stringent requirements for an optimal flexible device: low-temperature fabrication, nontoxic, surface free of pinhole defect, compatibility with organic semiconductors, and mechanical flexibility. Atomic force microscope measurements revealed that the optimized P123-PS blend film was uniform, crack-free, and highly resistant to moisture absorption on polyimide (PI) substrate. The film was well-adhered to the flexible Au/Cr/PI substrate for device application as a stable insulator, which was likely due to the strong molecular assembly that includes both hydrophilic and hydrophobic effects from the high molecular weights. The contact angle measurements for the P123-PS surface indicated that the system had a good hydrophobic surface with a total surface free energy of approximately 19.6 mJ m(-2). The dielectric properties of P123-PS were characterized in a cross-linked metal-insulator-metal structured device on the PI substrate by leakage current, capacitance, and dielectric constant measurements. The P123-PS film showed an average low leakage current density value of approximately 10(-10) A cm(-2) at 5-10 MV cm(-1) and large capacitance of 88.2 nF cm(-2) at 1 MHz, and the calculated dielectric constant was 2.7. In addition, we demonstrated an organic thin-film transistor (OTFT) device on a flexible PI substrate using the P123-PS as the gate dielectric layer and pentacene as the channel layer. The OTFT showed good saturation mobility (0.16 cm(2) V(-1) s(-1)) and an on-to-off current ratio of 5 × 10(5). The OTFT should operate under bending conditions; therefore flexibility tests for two types of bending modes (tensile and compressive) were also performed successfully.

12.
ChemSusChem ; 3(9): 1051-6, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20623577

RESUMO

A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.


Assuntos
Capacitância Elétrica , Eletrônica/instrumentação , Nanocompostos/química , Teste de Materiais , Metais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa