Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 598, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238312

RESUMO

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by [Formula: see text], π, and [Formula: see text] in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa