Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 238(Pt 1): 117133, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729960

RESUMO

Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Humanos , Metais , Piperazinas , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Res ; 215(Pt 1): 114241, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100100

RESUMO

This study is based on the removal of methylene blue (MB) from aqueous solution by cost effective and biodegradable adsorbent carboxymethyl starch grafted polyvinyl pyrolidone (Car-St-g-PVP). The Car-St-g-PVP was synthesized by grafting vinyl pyrolidone onto carboxymethyl starch by free radical polymerization reaction. The structure and different properties of Car-St-g-PVP were determined by 1H NMR, FT-IR, XRD, TGA and SEM. A series of batch experiments were conducted for the removal of MB, The adsorption affecting factors such as temperature, contact time, initial concentration of MB dye, dose of Car-St-g-PVP and pH were studied in detail. The other parameters like the thermodynamic study, kinetics and isothermal models were fitted to the experimental data. The results showed that pseudo 2nd order kinetics and Langmuir's adsorption isotherms were best fitted to experimental data with regression coefficient R2 viz. 0.99 and 0.97. The kinetic study showed that the adsorption mechanism favored chemisorption. The Gibbs free energy (ΔG°) for the adsorption process was found to be -7.31 kJ/mol, -8.23 kJ/mol, -9.00 kJ/mol and -10.10 kJ/mol at 25 °C, 35 °C, 45 °C and 55 °C respectively. The negative values of ΔG° suggested the spontaneous nature of the adsorption process. Similarly, the positive values of entropy (ΔS°) and enthalpy (ΔH°) 91.27 J/k.mol and 19.90 kJ/mol showed the increasing randomness and endothermic nature of the adsorption process. The value of separation factor (RL) was found to be less than one (RL < 1), which supported the feasibility of the adsorption process. The maximum MB removal percentage (% R) was found to be 98.6%. So, these findings show that Car-St-g-PVP can be meritoriously used for the treatment of MB from wastewater.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Ácidos Carboxílicos , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Polivinil , Povidona , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Termodinâmica , Águas Residuárias
3.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144579

RESUMO

In this research, a new biodegradable and eco-friendly adsorbent, starch-grafted polymethyl methacrylate (St-g-PMMA) was synthesized. The St-g-PMMA was synthesized by a free radical polymerization reaction in which methyl methacrylate (MMA) was grafted onto a starch polymer chain. The reaction was performed in water in the presence of a potassium persulfate (KPS) initiator. The structure and different properties of the St-g-PMMA was explored by FT-IR, 1H NMR, TGA, SEM and XRD. After characterization, the St-g-PMMA was used for the removal of MB dye. Different adsorption parameters, such as effect of adsorbent dose, effect of pH, effect of initial concentration of dye solution, effect of contact time and comparative adsorption study were investigated. The St-g-PMMA showed a maximum removal percentage (R%) of 97% towards MB. The other parameters, such as the isothermal and kinetic models, were fitted to the experimental data. The results showed that the Langmuir adsorption and pseudo second order kinetic models were best fitted to experimental data with a regression coefficient of R2 = 0.93 and 0.99, respectively.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Radicais Livres , Gentamicinas , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos , Metilmetacrilatos , Polimerização , Polimetil Metacrilato , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Água , Poluentes Químicos da Água/química
4.
Chemosphere ; 339: 139637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499806

RESUMO

The presence of dyes in contaminated water poses substantial dangers to the health of both humans and aquatic life. A process called precipitation polymerization was used to create unique cross-linked hexa-chlorocyclotriphosphazene-co-phenolphthalein (Hex-CCP-co-PPT) microspheres for the purpose of this research. Advanced methods such as X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermogravimetry (DTG) were used to characterise these microspheres. In a simulated solution, the performance of Hex-CCP-co-PPTs as a sorbent for removing MB dye was investigated, and the results showed an unprecedentedly high removal rate of 88.4% for MB. Temperature of 25 °C, a Hex-CCP-co-PPTs dose of 40 mg, an MB concentration of 20 ppm, an MB solution volume of 20 mL, a contact time of 40 min, and a pH of 9 were found to be the optimal experimental conditions. According to the results of the kinetic and adsorption analyses, the PSO and Langmuir adsorption models are the best ones to use. These models favour the chemi-sorption nature and mono-layered adsorption of MB in comparison to Hex-CCP-co-PPTs. Importantly, the thermodynamic analysis demonstrated that the process of removing MB by utilizing Hex-CCP-co-PPTs was endothermic and occurred spontaneously. These findings highlight the potential application of Hex-CCP-co-PPT microspheres in Algal Membrane Bioreactors (AMBRs) for the efficient and sustainable removal of dye from wastewater. This would contribute to the protection of ecosystems as well as the public's health.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Corantes/química , Microesferas , Ecossistema , Azul de Metileno/química , Poluentes Químicos da Água/química , Termodinâmica , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
ACS Appl Mater Interfaces ; 13(51): 61693-61706, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913332

RESUMO

Self-assembled polymer vesicles have emerged as exciting and promising materials for their potential application in drug delivery, but the dynamics of stimuli-responsive polymers in these areas with pendant functionality in order to understand the structure-property relationship under different physicochemical conditions is still open to discussion. In this work, nitroxide radical-containing copolymers were synthesized and utilized to investigate local dynamics in their vesicular assemblies. Herein, electron paramagnetic resonance (EPR) spectroscopy was applied to reveal the smart supramolecular vesicular structure and polymer chain dynamics in stimuli-responsive controlled assemblies by considering molecular-level interactions. These interactions and dynamics were dependent on the microenvironment of the assemblies, which might be affected by physicochemical parameters such as radical concentration, pH, redox agent, polarity, and viscosity. These observations help to accomplish quantitative insights into the stimuli-responsive colloidal vesicular assemblies. The vesicles were used as an anticancer drug carrier, which showed high drug loading efficiency (63.65%). The reduction-responsive prompt disassembly accelerated the release. Furthermore, the biocompatibility and anticancer activity were examined by cellular experiments against normal fibroblasts (L929) and human cervical cancer (HeLa) cell lines, respectively. The results demonstrate that this effort provides an easy strategy for designing controllable stimuli-responsive polymer nanosystems which promotes their promising application in cancer treatment.

6.
J Colloid Interface Sci ; 585: 237-249, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33285462

RESUMO

HYPOTHESIS: Organic radical polymers with tailored pendant functionalities have emerged as exciting and promising materials for their application versatility. Moreover, eco-friendly polymer-based organic nanomaterials with redox-active pendant side groups can replace the harmful heavy metal-based inorganic materials. On the other hand, self-assembled nanomaterials are of great interest and attracted more attention recently for their promising application in different advanced fields, but it is yet challenging to predict suitable hydrophilic-lipophilic balance (HLB) for stimuli-responsive random copolymers assembly due to structural irregularity. Among several experimental techniques, electron paramagnetic resonance (EPR) spectroscopy plays a unique and promising role in revealing structural and dynamic information of nanostructured radical containing materials. EXPERIMENTS: In this study, a series of spin labeled amphiphilic random copolymers poly(methyl methacrylate-co-acrylic acid) have been synthesized and characterized by FT-IR, UV-Vis spectroscopies, TGA, DSC and water contact angle (CA) techniques. Their electrochemical properties have been determined by cyclic voltammetry (CV) in different organic solvents. EPR spectroscopy has been applied with other analytical techniques to elucidate the smart supramolecular nanoparticles (SNPs) formation, stimuli-responsiveness and structural changes through the dynamics of different molecular interactions. FINDINGS: The structural and dynamic information of self-assembled nanoparticles have been observed to be dependent on multiple-stimuli-responsiveness in different microenvironments by applying physiological and chemical parameters such as the different concentration of radicals, pH, temperature, nature of the solvent and reducing agent. The obtained results reveal the knowledge to understand insight into the mechanism for the formation of stimuli-responsive colloidal nanoparticles assembled from amphiphilic random copolymers with apt HLB value. The CV results reveal that the charge transfer process of the nanoparticles in solution was diffusion regulated and depended on the accessibility of radicals. The radical (spin labeled) polymers offer a broad way to develop stimuli-responsive materials in various colloidal nanostructures by changing the microenvironment, appreciating their potential advanced applications in electronic devices, catalysis, stimuli-triggered drug/gene delivery and reactive oxygen species (ROS) scavenger.

7.
Carbohydr Res ; 476: 12-35, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884443

RESUMO

Starch is a homopolysaccharide made up of glucose units which are linked together via a glycosidic linkage. This biopolymer is well known for its low cost, biodegradability, renewability and easy availability. In spite of all these beauties, starch has some problems with their solubility in water, retrogradation, loss of viscosity due to rupturing of glucosidic bond when subjected to treatment and absence of some groups of primary importance like different functional groups especially carboxylic group, ester group, ether group and amino group. In order to overcome these shortcomings and enhance its applications, starch must be modified. The modification can be done chemically, physically and enzymatically, but noteworthy one is the chemical modification. In this review article, we focused on the recently used ways of chemical modification such as acid hydrolysis, cross-linking, acetylation/esterification, dual modification, oxidation and grafting of starch, and their properties. This review article highlighted the application of modified starch as an adsorbent for the removal of ammonia, phenol, heavy metals, and dyes.


Assuntos
Amido/química , Adsorção , Hidrólise , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa