RESUMO
Throughout the world, including the United States, men have worse outcomes from COVID-19 than women. SARS-CoV-2, the causative virus of the COVID-19 pandemic, uses angiotensin-converting enzyme 2 (ACE2) to gain cellular entry. ACE2 is a member of the renin-angiotensin system (RAS) and plays an important role in counteracting the harmful effects mediated by the angiotensin type 1 receptor. Therefore, we conducted Ovid MEDLINE and Embase database searches of basic science studies investigating the impact of the biological variable of sex on ACE2 expression and regulation from 2000, the year ACE2 was discovered, through December 31, 2020. Out of 2,131 publications, we identified 853 original research articles on ACE2 conducted in primary cells, tissues, and/or whole mammals excluding humans. The majority (68.7%) of these studies that cited the sex of the animal were conducted in males, while 11.2% were conducted solely in females; 9.26% compared ACE2 between the sexes, while 10.8% did not report the sex of the animals used. General findings are that sex differences are tissue-specific and when present, are dependent upon gonadal state. Renal, cardiac, and adipose ACE2 is increased in both sexes under experimental conditions that model co-morbidities associated with worse COVID-19 outcomes including hypertension, obesity, and renal and cardiovascular diseases; however, ACE2 protein was generally higher in the males. Studies in Ace2 knockout mice indicate ACE2 plays a greater role in protecting the female from developing hypertension than the male. Studying the biological variable of sex in ACE2 research provides an opportunity for discovery in conditions involving RAS dysfunction and will shed light on sex differences in COVID-19 severity.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , SARS-CoV-2/patogenicidade , Fatores Sexuais , Animais , COVID-19/virologia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/virologia , Humanos , Masculino , Peptidil Dipeptidase A/metabolismoRESUMO
Aims: Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results: We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion: Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.
RESUMO
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
RESUMO
Women who undergo oophorectomy prior to the age of natural menopause have a higher risk of neurological and psychological impairment. Treatment with the angiotensin receptor blocker (ARB) losartan for 10 weeks following ovariectomy of Long-Evans rats at 3 months of age reduced the ovariectomy-induced cognitive decrements. Following completion of the behavioral experiments, (Campos et al., 2019), the brains were harvested for preliminary receptor autoradiographic studies of AT1 receptor (AT1R) binding in selected brain regions using quantitative densitometric analysis of autoradiograms of 125I-sarcosine1, isoleucine8 angiotensin II binding. Four of the brain regions (amygdala, ventral subiculum, piriform cortex, and cingulate cortex) are associated with cognitive and emotional behavior while one (lateral hypothalamus) is associated with homeostasis. The density of AT1R varied by region: ventral subiculum > amygdala and cingulate cortex, and piriform cortex > cingulate cortex. Losartan treatment decreased AT1R binding in the ventral subiculum of sham and ovariectomized rats by 41.6%, and 46% in the piriform cortex of the sham rats, but tended to increase AT1R binding in the piriform cortex and cingulate cortex 77% and 107%, respectively, in the ovariectomized rats. AT1R binding did not differ significantly between intact male and sham-vehicle female rats among surveyed brain regions. These results suggest that losartan-induced changes in brain AT1R expression may contribute to the reduced anxiety-like behavior and memory impairments seen in ovariectomized rats, but replication of these observations will be needed to determine the extent to which brain AT1R changes mediate the adverse behavioral effects of ovariectomy.
Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Losartan/administração & dosagem , Ovariectomia/tendências , Receptor Tipo 1 de Angiotensina/metabolismo , Animais , Esquema de Medicação , Feminino , Masculino , Ovariectomia/efeitos adversos , Ratos , Ratos Long-EvansRESUMO
MATERIALS AND METHODS: Quantitative expression of the RNA of these 17 genes in normal and cancerous tissues obtained using chip arrays from the public functional genomics data repository, Gene Expression Omnibus (GEO) application, was compared statistically. RESULTS: Expression of four genes, AGT (angiotensinogen), ENPEP (aminopeptidase A) MME (neprilysin), and PREP (prolyl endopeptidase), was significantly upregulated in CRC specimens. Expression of REN (renin), THOP (thimet oligopeptidase), NLN (neurolysin), PRCP (prolyl carboxypeptidase), ANPEP (aminopeptidase N), and MAS1 (Mas receptor) was downregulated in CRC specimens. CONCLUSIONS: Presuming gene expression parallel protein expression, these results suggest that increased production of the angiotensinogen precursor of angiotensin (ANG) peptides, with the reduction of the enzymes that metabolize it to ANG II, can lead to accumulation of angiotensinogen in CRC tissues. Downregulation of THOP, NLN, PRCP, and MAS1 gene expression, whose proteins contribute to the ACE2/ANG 1-7/Mas axis, suggests that reduced activity of this RAS branch could be permissive for oncogenicity. Components of the RAS may be potential therapeutic targets for treatment of CRC.