RESUMO
Fish show variation in feeding habits to adapt to complex environments. However, the genetic basis of feeding preference and the corresponding metabolic strategies that differentiate feeding habits remain elusive. Here, by comparing the whole genome of a typical carnivorous fish (Leiocassis longirostris Günther) with that of herbivorous fish, we identify 250 genes through both positive selection and rapid evolution, including taste receptor taste receptor type 1 member 3 (tas1r3) and trypsin We demonstrate that tas1r3 is required for carnivore preference in tas1r3-deficient zebrafish and in a diet-shifted grass carp model. We confirm that trypsin correlates with the metabolic strategies of fish with distinct feeding habits. Furthermore, marked alterations in trypsin activity and metabolic profiles are accompanied by a transition of feeding preference in tas1r3-deficient zebrafish and diet-shifted grass carp. Our results reveal a conserved adaptation between feeding preference and corresponding metabolic strategies in fish, and provide novel insights into the adaptation of feeding habits over the evolution course.
Assuntos
Genoma , Receptores Acoplados a Proteínas G , Peixe-Zebra , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/genética , Comportamento Alimentar , Carpas/genética , Carpas/metabolismo , Preferências Alimentares , Carnivoridade , Evolução MolecularRESUMO
In eukaryotic cells, RNA-binding proteins (RBPs) interact with RNAs to form ribonucleoprotein complexes (RNA granules) that have long been thought to regulate RNA fate or activity. Emerging evidence suggests that some RBPs not only bind RNA but also possess enzymatic activity related to ubiquitin regulation, raising important questions of whether these RBP-formed RNA granules regulate ubiquitin signaling and related biological functions. Here, we show that Drosophila Otu binds RNAs and coalesces to membrane-less biomolecular condensates via its intrinsically disordered low-complexity domain, and coalescence represents a functional state for Otu exerting deubiquitinase activity. Notably, coalescence-mediated enzymatic activity of Otu is positively regulated by its bound RNAs and co-partner Bam. Further genetic analysis reveals that the Otu/Bam deubiquitinase complex and dTraf6 constitute a feedback loop to maintain intestinal immune homeostasis during aging, thereby controlling longevity. Thus, regulated biomolecular condensates may represent a mechanism that controls dynamic enzymatic activities and related biological processes.
Assuntos
Proteínas de Drosophila/genética , Longevidade/genética , Fator 6 Associado a Receptor de TNF/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Enzimas Desubiquitinantes , Drosophila/genética , Longevidade/fisiologia , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Ubiquitina/genéticaRESUMO
The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.
Assuntos
Testículo , Peixe-Zebra , Animais , Masculino , Feminino , Testículo/metabolismo , Peixe-Zebra/genética , Androgênios/genética , Androgênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual/genética , Estrogênios/genéticaRESUMO
ABSTRACT: Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies. A double-blind, placebo-controlled, dose-escalation phase to identify a recommended dose was followed by an open-label expansion phase with matched controls to further evaluate the efficacy and safety of CD24Fc in preventing acute GVHD. A multidose regimen of CD24Fc produced sustained drug exposure with similar safety outcomes when compared with single-dose regimens. Grade 3 to 4 acute GVHD-free survival at day 180 was 96.2% (95% confidence interval [CI], 75.7-99.4) in the CD24Fc expansion cohort (CD24Fc multidose), compared with 73.6% (95% CI, 63.2-81.4) in matched controls (hazard ratio, 0.1 [95% CI, 0.0-0.6]; log-rank test, P = .03). No participants in the CD24Fc escalation or expansion phases experienced dose-limiting toxicities (DLTs). The multidose regimen of CD24Fc was well tolerated with no DLTs and was associated with high rates of severe acute GVHD-free survival after myeloablative MUD HSCT. This trial was registered at ClinicalTrials.gov as #NCT02663622.
Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Metotrexato/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante Homólogo , Recidiva Local de Neoplasia/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Condicionamento Pré-Transplante/efeitos adversosRESUMO
ABSTRACT: Abatacept plus calcineurin inhibitors/methotrexate (CNI/MTX) is the first US Food and Drug Administration (FDA)-approved regimen for acute graft-versus-host disease (aGVHD) prophylaxis during unrelated-donor hematopoietic cell transplantation (URD-HCT). Using Center for International Blood and Marrow Transplant Research data, we investigated its impact in patients receiving 7/8 HLA-mismatched unrelated donor (MMUD) or 8/8 HLA-matched unrelated donor (MUD) URD-HCT between 2011 and 2018. Primary outcomes included day-180, 1-year, and 2-year overall survival (OS) and relapse-free survival (RFS) for abatacept + CNI/MTX vs CNI/MTX, CNI/MTX + antithymocyte globulin (ATG), and posttransplant cyclophosphamide-based prophylaxis (PT-Cy). For 7/8 MMUDs, day-180 OS (primary end point supporting FDA approval) was significantly higher for abatacept + CNI/MTX vs CNI/MTX (98% vs 75%; P = .0028). Two-year RFS was significantly higher for abatacept + CNI/MTX vs CNI/MTX (74% vs 49%; P = .0098) and CNI/MTX + ATG (77% vs 35%; P = .0002), and similar vs PT-Cy (72% vs 56%; P = .1058). For 8/8 MUDs, 2-year RFS for abatacept + CNI/MTX was numerically higher vs CNI/MTX (63% vs 52%; P = .1497), with an improved hazard ratio (HR) of 0.46 (0.25-0.86), and vs CNI/MTX + ATG (66% vs 55%; P = .1193; HR, 0.39 [0.21-0.73]), and was similar vs PT-Cy (68% vs 57%; P = .2356; HR, 0.54 [0.26-1.11]). For 7/8 MMUD and 8/8 MUD recipients, abatacept + CNI/MTX prophylaxis improved survival outcomes vs CNI/MTX and CNI/MTX + ATG; outcomes were similar to PT-Cy-based regimens. Abatacept + CNI/MTX may facilitate unrelated donor pool expansion for HCT.
Assuntos
Abatacepte , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doadores não Relacionados , Humanos , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/mortalidade , Abatacepte/uso terapêutico , Abatacepte/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Metotrexato/uso terapêutico , Metotrexato/administração & dosagem , Imunossupressores/uso terapêutico , Adulto Jovem , Doença Aguda , Soro Antilinfocitário/uso terapêutico , Soro Antilinfocitário/administração & dosagemRESUMO
Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320â kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.
Assuntos
Peixes-Gato , Processos de Determinação Sexual , Animais , Masculino , Feminino , Peixes-Gato/genética , Evolução Molecular , Filogenia , Cromossomos Sexuais/genética , Cromossomo Y/genética , Genoma , Cromossomo X/genética , Receptores de Peptídeos , Receptores de Fatores de Crescimento Transformadores betaRESUMO
BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Idoso , Prognóstico , Variações do Número de Cópias de DNA/genética , Mutação/genética , Instabilidade de MicrossatélitesRESUMO
During immune responses against invading pathogenic bacteria, the cytoskeleton network enables macrophages to implement multiple essential functions. To protect the host from infection, macrophages initially polarize to adopt different phenotypes in response to distinct signals from the microenvironment. The extracellular stimulus regulates the rearrangement of the cytoskeleton, thereby altering the morphology and migratory properties of macrophages. Subsequently, macrophages degrade the extracellular matrix (ECM) and migrate toward the sites of infection to directly contact invading pathogens, during which the involvement of cytoskeleton-based structures such as podosomes and lamellipodia is indispensable. Ultimately, macrophages execute the function of phagocytosis to engulf and eliminate the invading pathogens. Phagocytosis is a complex process that requires the cooperation of cytoskeleton-enriched super-structures, such as filopodia, lamellipodia, and phagocytic cup. This review presents an overview of cytoskeletal regulations in macrophage polarization, ECM degradation, migration, and phagocytosis, highlighting the pivotal role of the cytoskeleton in host defense against infection.
Assuntos
Citoesqueleto , Macrófagos , Macrófagos/metabolismo , Citoesqueleto/metabolismo , Fagocitose/fisiologia , Membrana Celular , MicrotúbulosRESUMO
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Assuntos
Gônadas , Diferenciação Sexual , Animais , Diferenciação Celular/genética , Feminino , Proteínas de Peixes/genética , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Poliploidia , Diferenciação Sexual/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Light is a crucial environmental factor that influences the phenotypic development of plants. Despite extensive studies on the physiological, biochemical, and molecular mechanisms of the impact of light on phenotypes, genetic investigations regarding light-induced transgenerational plasticity in Arabidopsis thaliana remain incomplete. In this study, we used thaliana as the material, then gathered phenotypic data regarding leaf number and plant height under high- and low-light conditions from two generations. In addition to the developed genotype data, a functional mapping model was used to locate a series of significant single-nucleotide polymorphisms (SNPs). Under low-light conditions, a noticeable adaptive change in the phenotype of leaf number in the second generation suggests the presence of transgenerational genetic effects in thaliana under environmental stress. Under different lighting treatments, 33 and 13 significant genes associated with transgenerational inheritance were identified, respectively. These genes are largely involved in signal transduction, technical hormone pathways, light responses, and the regulation of organ development. Notably, genes identified under high-light conditions more significantly influence plant development, whereas those identified under low-light conditions focus more on responding to external environmental stimuli.
RESUMO
BACKGROUND: The liver function reserve has a significant impact on the therapeutic effects of anti-programmed cell death-1 (PD-1) for hepatocellular carcinoma (HCC). This study aimed to comprehensively evaluate the ability of liver-function-based indicators to predict prognosis and construct a novel prognostic score for HCC patients with anti-PD-1 immunotherapy. METHODS: Between July 2018 and January 2020, patients diagnosed with HCC who received anti-PD-1 treatment were screened for inclusion in the study. The valuable prognostic liver-function-based indicators were selected using Cox proportional hazards regression analysis to build a novel liver-function-indicators-based signature (LFIS). Concordance index (C-index), the area under the receiver operating characteristic (ROC) curve (AUC), and Kaplan-Meier survival curves were utilized to access the predictive performance of LFIS. RESULTS: A total of 434 HCC patients who received anti-PD-1 treatment were included in the study. The LFIS, based on alkaline phosphatase-to-albumin ratio index, Child-Pugh score, platelet-albumin score, aspartate aminotransferase-to-lymphocyte ratio index, and gamma-glutamyl transpeptidase-to-lymphocyte ratio index, was constructed and identified as an independent risk factor for patient survival. The C-index of LFIS for overall survival (OS) was 0.692, which was higher than the other single liver-function-based indicator. The AUC of LFIS at 6-, 12-, 18-, and 24-month were 0.74, 0.714, 0.747, and 0.865 for OS, respectively. Patients in the higher-risk LFIS group were associated with both worse OS and PFS. An online and easy-to-use calculator was further constructed for better application of the LFIS signature. CONCLUSION: The LFIS score had an excellent prognosis prediction ability superior to every single liver-function-based indicator for anti-PD-1 treatment in HCC patients. It is a reliable, easy-to-use tool to stratify risk for OS and PFS in HCC patients who received anti-PD-1 treatment.
Assuntos
Carcinoma Hepatocelular , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Testes de Função Hepática/métodos , Estudos Retrospectivos , Taxa de Sobrevida , Fígado/patologia , Imunoterapia/métodos , Biomarcadores Tumorais , AdultoRESUMO
OBJECTIVE: Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming to enhance systemic responses to immunotherapy. METHODS: In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each treatment. RESULTS: The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2-11.1) and 14.3 months (95% CI, 6.5-22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were significantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly associated with worse prognosis. CONCLUSIONS: Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy and guide treatment. CLINICAL TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov, NCT05540275.
Assuntos
Bevacizumab , Neoplasias Encefálicas , DNA Tumoral Circulante , Glioblastoma , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso , Adulto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , PrognósticoRESUMO
Self-assembly of colloidal nanoparticles enables the easy building of assembly units into higher-order structures and the bottom-up preparation of functional materials. Nickel phosphides represent an important group of catalysts for hydrogen evolution reaction (HER) from water splitting. In this paper, the preparation of porous nickel phosphide superparticles and their HER efficiencies are reported. Ni and Ni2P nanoparticles are self-assembled into binary superparticles via an oil-in-water emulsion method. After annealing and acid etching, the as-prepared Ni-Ni2P binary superparticles change into porous nickel phosphide superparticles. The porosity and crystalline phase of the superparticles can be tuned by adjusting the ratio of Ni and Ni2P nanoparticles. The resulting porous superparticles are effective in driving HER under acidic conditions, and the modulation of porosity and phase further optimize the electrochemical performance. The prepared Ni3P porous superparticles not only possess a significantly enhanced specific surface area compared to solid Ni-Ni2P superparticles but also exhibit an excellent HER efficiency. The calculations based on the density functional theories show that the (110) crystal facet exhibits a relatively lower Gibbs free energy of hydrogen adsorption. This work provides a self-assembly approach for the construction of porous metal phosphide nanomaterials with tunable crystalline phase and porosity.
RESUMO
Copper ions (Cu2+) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material. The strong light absorption of metalloporphyrin and the electron-rich properties of supplied TTF contribute to its photoelectrochemical performance. Additionally, the sulfur (S) in the TTF can coordinate with Cu2+. Based on these properties, we constructed a highly sensitive photoelectrochemical sensor for detecting Cu2+. The sensor exhibited a linear range from 0.5 nM to 500 nM (R2 = 0.9983) and a detection limit of 0.15 nM for Cu2+. Notably, the sensor performed well when detecting Cu2+ in water samples.
RESUMO
Dinuclear metal complexes are a promising class of compounds applicable to photoluminescence and catalysis. However, an understanding of the mechanism of the nonradiative decay process of dinuclear metal complexes remains very limited. Herein, the mechanism of the nonradiative decay process of dinuclear iridium(III) complexes (D1 and D2) and their mononuclear iridium(III) complex (M1) is elucidated by using density functional theory (DFT). Our results reveal that the nonradiative decay process occurs on a weak Ir-N bond and therefore results in metal-centered triplet excited (3MC) states. The deactivation pathways connecting the Franck-Condon region and the minimum energy seam of crossing (MESX) were further identified to be the determining step, which is the thermal deactivation pathways of 3MLCT â TS â 3MCâ MESX. The smaller energy barrier from the T1 minimum to the MESX state for D1 (9.48 kcal mol-1) and D2 (8.64 kcal mol-1) relative to that for M1 (10.95 kcal mol-1) plays a key role in observed weak emissions of D1 and D2 in the red region compared to that of M1. Moreover, by introducing the electron-withdrawing Cl atom at the para- or meta-position of the 2-phenylpyrimidine (ppd) moiety, a large energy barrier between the 3MC state and the T1 minimum is obtained. Our work not only provides the possibility of the nonradiative decay process of dinuclear iridium(III) materials, but also paves a promising way for reducing the nonradiative process and developing saturated efficient red dinuclear iridium(III) materials for broader potential application.
RESUMO
BACKGROUND: Bone and soft tissue sarcomas are rare malignancies, and their heterogeneity has limited the development of novel drugs. This study aimed to apply two validated tools to evaluate the clinical benefits of novel drug therapies for sarcoma developed over the last decade. METHODS: The PubMed and Embase databases were searched for randomized controlled trials (RCTs) of systemic therapies for sarcomas published between 2013 and 2023. Each trial was scored according to the European Society of Medical Oncology-Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS) and the American Society of Clinical Oncology-Value Framework version 2 (ASCO-VF). RESULTS: We included 52 RCTs in this study, of which 17 (32.7%) reported positive results that favored the experimental arm. The ESMO-MCBS grades were determined in 14/17 positive trials, and three of them (21.4%) met the threshold for meaningful clinical benefit. Likewise, ASCO-VF scores were calculated for 11/17 positive trials, and three of them (27.3%) met the threshold for meaningful clinical benefit. Weak correlation (r = 0.38, P = 0.277) and agreement (κ = 0.211, P = 0.490) were observed between the two frameworks. CONCLUSION: Only a few RCTs with positive results have demonstrated substantial patient benefits for bone and soft tissue sarcomas over the past decade.
RESUMO
Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.
Assuntos
Aterosclerose , Modelos Animais de Doenças , Hiperlipidemia Familiar Combinada , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Aterosclerose/tratamento farmacológico , Humanos , Camundongos , Hiperlipidemia Familiar Combinada/tratamento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Triglicerídeos/sangue , Dieta Hiperlipídica , Atorvastatina/uso terapêutico , Atorvastatina/farmacologiaRESUMO
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.
RESUMO
OBJECTIVE: Long-term re-intervention after ultrasound-guided high intensity focused ultrasound (USgHIFU) ablation was reported, and the prediction of non-perfusion volume ratio (NPVR) in differently aged patients with uterine fibroids (UFs) was explored. MATERIALS AND METHODS: Patients with UFs who underwent USgHIFU ablation from January 2012 to December 2019 were enrolled and divided into < 40-year-old and ≥ 40-year-old groups. Cox regression was used to analyze the influencing factors of re-intervention rate, and receiver operating characteristic (ROC) curve was used to analyze the correlation between NPVR and re-intervention rate. RESULTS: A total of 2141 patients were enrolled, and 1558 patients were successfully followed up. The 10-year cumulative re-intervention rate was 21.9%, and the < 40-year-old group had a significantly higher rate than the ≥ 40-year-old group (30.8% vs. 19.1%, p < 0.001). NPVR was an independent risk factor in both two groups. When the NPVR reached 80.5% in the < 40-year-old group and 75.5% in the ≥ 40-year-old group, the risk of long-term re-intervention was satisfactory. CONCLUSION: The long-term outcome of USgHIFU is promising. The re-intervention rate is related to NPVR in differently aged patients. Young patients need a high NPVR to reduce re-intervention risk.
Assuntos
Leiomioma , Humanos , Idoso , Adulto , Perfusão , Leiomioma/diagnóstico por imagem , Leiomioma/cirurgia , Fatores de RiscoRESUMO
BACKGROUND: The objective of this research was to elucidate the association between the length of infertility and the outcomes of intrauterine insemination (IUI) in women of varying ages - a topic that has been the subject of investigation for numerous years, yet lacks a definitive consensus. METHODS: A retrospective cohort investigation involving 5268 IUI cycles was undertaken at the Reproductive Medicine Center of Nanjing Drum Tower Hospital from 2016 to 2022. Utilizing the smooth fitting curve along with threshold and saturation effect analysis, the correlation between infertility duration and IUI clinical pregnancy rates was discerned. Moreover, patients were bifurcated into two cohorts based on their respective infertility durations. A secondary examination was also performed employing propensity-score matching to mitigate the impact of confounding variables. Subsequent threshold and saturation effect analysis was carried out across various subgroups, segmented on the basis of age differentiation. RESULTS: When the duration of infertility was more than 5 years, the clinical pregnancy rate decreased with the increase of infertility duration (aOR: 0.894, 95%CI: 0.817-0.991, p = 0.043). The multivariate regression analysis suggested that longer duration of infertility (≥ 5 years) was significantly correlated with the lower clinical pregnancy rate (aOR: 0.782, 95% CI: 0.643-0.950, p = 0.01). After the propensity-score matching, the clinical pregnancy rate of women with longer infertility duration were also higher. When the duration of infertility was more than 5 years, the clinical pregnancy rate of women younger than 35 years old decreased with the increase of infertility duration (aOR: 0.906, 95%CI: 0.800-0.998, p = 0.043). CONCLUSIONS: The clinical pregnancy rate and live birth rate of IUI in young women (< 35 years old) who have been infertile for more than 5 years significantly decrease with the prolongation of infertility time. Therefore, for young women who have been infertile for more than 5 years, IUI may not be the best choice.