RESUMO
Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.
Assuntos
Alelos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Mutação/genética , Animais , Ataxina-3/genética , Autofagossomos/metabolismo , Autofagia , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/efeitos dos fármacos , Neurônios/citologia , Peptídeos/genética , Fenótipo , Reprodutibilidade dos TestesRESUMO
Stroke is one of the leading causes of death worldwide, with intracerebral hemorrhage (ICH) being the most lethal subtype. Neuritin (Nrn) is a neurotropic factor that has been reported to have neuroprotective effects in acute brain and spinal cord injury. However, whether Nrn has a protective role in ICH has not been investigated. In this study, ICH was induced in C57BL/6 J mice by injection of collagenase VII, while the overexpression of Nrn in the striatum was induced by an adeno-associated virus serotype 9 (AAV9) vector. We found that compared with GFP-ICH mice, Nrn-ICH mice showed improved performance in the corner, cylinder and forelimb tests after ICH, and showed less weight loss and more rapid weight recovery. Overexpression of Nrn reduced brain lesions, edema, neuronal death and white matter and synaptic integrity dysfunction caused by ICH. Western blot results showed that phosphorylated PERK and ATF4 were significantly inhibited, while phosphorylation of Akt/mammalian target of rapamycin was increased in the Nrn-ICH group, compared with the GFP-ICH group. Whole cell recording from motor neurons indicated that overexpression of Nrn reversed the decrease of spontaneous excitatory postsynaptic currents (sEPSCs) and action potential frequencies induced by ICH. These data show that Nrn improves neurological deficits in mice with ICH by reducing brain lesions and edema, inhibiting neuronal death, and possibly by increasing neuronal connections.
Assuntos
Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Recuperação de Função Fisiológica/fisiologia , Adenina/administração & dosagem , Adenina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral/patologia , Dependovirus/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Furanos/administração & dosagem , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Indóis/administração & dosagem , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacosRESUMO
Neuritin is a neurotrophic factor that is activated by neural activity and neurotrophins. Its major function is to promote neurite growth and branching; however, the underlying mechanisms are not fully understood. To address this issue, this study investigated the effects of neuritin on neurite and spine growth and intracellular Ca2+ concentration in rat cerebellar granule neurons (CGNs). Incubation of CGNs for 24 h with neuritin increased neurite length and spine density; this effect was mimicked by insulin and abolished by inhibiting insulin receptor (IR) or mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) activity. Calcium imaging and western blot analysis revealed that neuritin enhanced the increase in intracellular Ca2+ level induced by high K+ , and stimulated the cell surface expression of CaV 1.2 and CaV 1.3 α subunits of the L-type calcium channel, which was suppressed by inhibition of IR or mitogen-activated protein kinase kinase/ERK. Treatment with inhibitors of L-type calcium channels, calmodulin, and calcineurin (CaN) abrogated the effects of neuritin on neurite length and spine density. A similar result was obtained by silencing nuclear factor of activated T cells c4, which is known to be activated by neuritin in CGNs. These results indicate that IR and ERK signaling as well as the Ca2+ /CaN/nuclear factor of activated T cells c4 axis mediate the effects of neuritin on neurite and spine growth in CGNs. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14195.
Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cerebelo/citologia , Espinhas Dendríticas/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuropeptídeos/farmacologia , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Grânulos Citoplasmáticos/efeitos dos fármacos , Feminino , Proteínas Ligadas por GPI/farmacologia , Inativação Gênica , Humanos , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/antagonistas & inibidoresRESUMO
Neuritin is a member of the neurotrophic factor family, which is activated by neural activity and neurotrophins, and promotes neurite growth and branching. It has shown to play an important role in neuronal plasticity and regeneration. It is also involved in other biological processes such as angiogenesis, tumorigenesis and immunomodulation. Thus far, however, the primary mechanisms of neuritin, including whether or not it acts through a receptor or which downstream signals might be activated following binding, are not fully understood. Recent evidence suggests that neuritin may be a potential therapeutic target in several neurodegenerative diseases. This review focuses on the recent advances in studies regarding the newly identified functions of neuritin and the signaling pathways related to these functions. We also discuss current hot topics and difficulties in neuritin research.
Assuntos
Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Ligadas por GPI/fisiologia , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/fisiopatologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologiaRESUMO
Neuritin is a neurotrophic factor involved in neural development and synaptic plasticity. However, its role in modulating synaptic transmission remains unclear. Here, we investigated the effects of neuritin on miniature excitatory postsynaptic currents (mEPSCs) and glutamate release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with neuritin for 45 min significantly increased mEPSC frequency and glutamate release as measured by high-performance liquid chromatography, which was mimicked by insulin and abrogated by an insulin receptor (IR) inhibitor. Neuritin-induced upregulation of synaptic transmission was correlated with activation of ERK, and inhibition of mitogen-activated protein kinases/extracellular signal-regulated kinases (MEK/ERK) activity attenuated the neuritin-induced increase in mEPSC frequency and glutamate release. T-type calcium channel inhibitors but not the L-type inhibitor abolished the inward calcium current and the effects of neuritin on mEPSC frequency and glutamate release. Western blotting of membrane proteins showed that neuritin promoted surface expression of CaV3.3 α-subunit, which was also eliminated by inhibition of IR or MEK/ERK activity. The effects of neuritin on mEPSC frequency, glutamate release, and CaV3.3 α-subunit expression were inhibited by an intracellular protein-transport inhibitor. These results confirm involvement of the IR and ERK signaling pathway, and provide novel insights into the mechanisms of neuritin function in synaptic transmission.
Assuntos
Canais de Cálcio Tipo T/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Córtex Pré-Frontal/citologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neuropeptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Coloração pela Prata , Transmissão Sináptica/fisiologia , Fatores de Tempo , Transdução GenéticaRESUMO
Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions.
Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Canais de Potássio Shal/biossíntese , Animais , Calcineurina/genética , Cerebelo/metabolismo , Espinhas Dendríticas/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Canais de Potássio Shal/genéticaRESUMO
GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-ß superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K(+) currents and Kv2.1 α subunit expression through TßRII (TGF-ß receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca(2+) concentration ([Ca(2+)]i) in response to membrane depolarization, as determined by Ca(2+) imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca(2+) current (ICa) without altering steady-state activation of Ca(2+) channels. Treatment with nifedipine, an inhibitor of L-type Ca(2+) channels, abrogated GDF-15-induced increases in [Ca(2+)]i and ICa The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TßRII phosphorylation. Given that Cav1.3 is not only a channel for Ca(2+) influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TßRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Cerebelo/citologia , Fator 15 de Diferenciação de Crescimento/farmacologia , Neurônios/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios/efeitos dos fármacos , Nifedipino/farmacologia , Proteína Oncogênica v-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor beta superfamily. GDF-15 expression is dramatically upregulated during acute brain injury, cancer, cardiovascular disease, and inflammation, suggesting its potential value as a disease biomarker. It has been suggested that GDF-15 has neurotropic effects in the nervous system. Our studies showed that GDF-15 modulated the expression of neuronal K+ and Ca2+ ion channels and increased the release of excitatory transmitter in the medial prefrontal cortex of mice. GDF-15 is also involved in the complex modulation of cancer and cardiovascular disease. Here, we reviewed studies involving the modulation of GDF-15 expression and its mechanisms, the primary pathological and physiological functions of GDF-15 in neurological and cardiovascular systems, and its role in cancer progression. The biological effects and the values of GDF-15 in basic research and clinical applications were also addressed.
Assuntos
Doenças Cardiovasculares/fisiopatologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Neoplasias/fisiopatologia , Sistema Nervoso/metabolismo , Animais , Lesões Encefálicas/fisiopatologia , Canais de Cálcio/metabolismo , Progressão da Doença , Humanos , Inflamação , Camundongos , Canais de Potássio/metabolismo , Córtex Pré-Frontal/metabolismo , Fator de Crescimento Transformador beta , Regulação para CimaRESUMO
Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABA(A) Rs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABA(A) Rs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABA(A) R currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABA(A) R currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABA(A) R currents. Together, these data obviously demonstrated for the first time that neuronal GABA(A) currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects.
Assuntos
Grânulos Citoplasmáticos/metabolismo , Ativação do Canal Iônico , Campos Magnéticos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Análise de Regressão , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologiaRESUMO
BACKGROUND/AIMS: Arachidonic acid (AA) and its metabolites are important endogenous lipid messengers. In this study, we test the effect of Leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of AA, on L-type calcium channels in A7r5 rat aortic vascular smooth muscle cells. METHODS: L-type calcium channel currents were recorded by a patch-clamp technique. The mRNA expression of CaV1.2 was determined by Real-time RT-PCR. The protein expression of CaV1.2 and p38 activity was determined by Western blot analysis. RESULTS: LTB4 inhibits L-type channel currents in A7r5 cells in a dose-and time- dependent manner. LTB4 reduced the mRNA/protein expression of CaV1.2 channels in A7r5 cells. BLT1 receptor antagonist LY29311 abrogated the inhibitory effect of LTB4, while BLT2 receptor antagonist LY255283 had no effect. 5Z-7-oxozeaenol and SB203580, which block TAK1 and p38 kinase respectively, abrogated the LTB4 inhibitory effect on L-type calcium channels. LTB4 increased p38 activity in A7r5 cells. Blockage of Src, PI3K, JNK and NF-x03BA;B kinase had no effects on LTB4 inhibition of L-type calcium channel currents in A7r5 cells. CONCLUSION: We conclude that LTB4 inhibits L-type calcium channels through BLT1-TAk1-p38 signaling pathway. The LTB4 inhibitory effect on L-type calcium channels may be involved in its pathological processes such as atherosclerosis.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Leucotrieno B4/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Benzoatos/farmacologia , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Imidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores do Leucotrieno B4/antagonistas & inibidores , Receptores do Leucotrieno B4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
AIMS: PGE2 is one of the most abundant prostanoids in mammalian tissues, but its effect on neuronal receptors has not been well investigated. This study examines the effect of PGE2 on GABAA receptor currents in rat cerebellar granule neurons. METHODS: GABAA currents were recorded using a patch-clamp technique. Cell surface and total protein of GABAA ß1/2/3 subunits was carried out by Western blot analysis. RESULTS: Upon incubation of neurons with PGE2 (1 µM) for 60 minutes, GABAA currents were significantly potentiated. This PGE2-driven effect could be blocked by PKC or CaMKII inhibitors as well as EP1 receptor antagonist, and mimicked by PMA or EP1 receptor agonist. Furthermore, Western blot data showed that PGE2 did not increase the total expression level of GABAA receptors, but significantly increased surface levels of GABAA ß1/2/3 subunits after 1 h of treatment. Consistently, both PKC and CaMKII inhibitors were able to reduce PGE2-induced increases in cell surface expression of GABAA receptors. CONCLUSION: Activation of either the PKC or CaMKII pathways by EP1 receptors mediates the PGE2-induced increase in GABAA currents. This suggests that upregulation of postsynaptic GABAA receptors by PGE2 may have profound effects on cerebellar functioning under physiological and pathological conditions.
Assuntos
Dinoprostona/fisiologia , Receptores de GABA-A/fisiologia , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Cerebelo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-DawleyRESUMO
GDF15 (growth/differentiation factor 15), a novel member of the TGFß (transforming growth factor ß) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFßR2 (TGFß receptor 2), not TGFßR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFßRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFßRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.
Assuntos
Cerebelo/fisiologia , Fator 15 de Diferenciação de Crescimento/fisiologia , Proteína Oncogênica v-akt/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Cerebelo/citologia , Humanos , Ratos , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais/genéticaRESUMO
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 µM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.
Assuntos
Cálcio/metabolismo , Cerebelo/citologia , Grânulos Citoplasmáticos/metabolismo , Campos Eletromagnéticos/efeitos adversos , Melatonina/farmacologia , Substâncias Protetoras/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Antioxidantes/farmacologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/efeitos da radiação , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos da radiação , Masculino , Camundongos , Oxirredução , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiaçãoRESUMO
In addition to their neurotoxic role in Alzheimer's disease (AD), ß-amyloid peptides (Aßs) are also known to play physiological roles. Here, we show that recombinant Aß40 significantly increased the outward current of the GABA(A) receptor containing (GABA(A)α6) in rat cerebellar granule neurons (CGNs). The Aß40-mediated increase in GABA(A)α6 current was mediated by an increase in GABA(A)α6 protein expression at the translational rather than the transcriptional level. The exposure of CGNs to Aß40 markedly induced the phosphorylation of ERK (pERK) and mammalian target of rapamycin (pmTOR). The increase in GABA(A)α6 current and expression was attenuated by specific inhibitors of ERK or mTOR, suggesting that the ERK and mTOR signaling pathways are required for the effect of Aß40 on GABA(A)α6 current and expression in CGNs. A pharmacological blockade of the p75 neurotrophin receptor (p75(NTR)), but not the insulin or α7-nAChR receptors, abrogated the effect of Aß40 on GABA(A)α6 protein expression and current. Furthermore, the expression of GABA(A)α6 was lower in CGNs from APP(-/-) mice than in CGNs from wild-type mice. Moreover, the internal granule layer (IGL) in APP(-/-) mice was thinner than the IGL in wild-type mice. The injection of Aß40 into the cerebellum reversed this effect, and the application of p75(NTR) blocking antibody abolished the effects of Aß40 on cerebellum morphology in APP(-/-) mice. Our results suggest that low concentrations of Aß40 play a role in regulating CGN maturation through p75(NTR).
Assuntos
Peptídeos beta-Amiloides/farmacologia , Cerebelo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de GABA-A/biossíntese , Serina-Treonina Quinases TOR/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Biotinilação , Western Blotting , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Feminino , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologiaRESUMO
Neuregulin-1 (NRG-1) is a member of a family of neurotrophic factors that is required for the differentiation, migration, and development of neurons. NRG-1 signaling is thought to contribute to both neuronal development and the neuropathology of schizophrenia, which is believed to be a neurodevelopmental disorder. However, few studies have investigated the role of NRG-1 on voltage-gated ion channels. In this study, we report that NRG-1 specifically increases the density of transient outward K(+) currents (IA) in rat cerebellar granule neurons (CGNs) in a time-dependent manner without modifying the activation or inactivation properties of IA channels. The increase in IA density is mediated by increased protein expression of Kv4.2, the main α-subunit of the IA channel, most likely by upregulation of translation. The effect of NRG-1 on IA density and Kv4.2 expression was only significant in immature neurons. Mechanistically, both Akt and mammalian target of rapamycin (mTOR) signaling pathways are required for the increased NRG-1-induced IA density and expression of Kv4.2. Moreover, pharmacological blockade of the ErbB4 receptor reduced the effect of NRG-1 on IA density and Kv4.2 induction. Our data reveal, for the first time, that stimulation of ErbB4 signaling by NRG-1 upregulates the expression of K(+) channel proteins via activation of the Akt/mTOR signaling pathway and plays an important role in neuronal development and maturation. NRG1 does not acutely change IA and delayed-rectifier outward (IK) of rat CGNs, suggesting that it may not alter excitability of immature neurons by altering potassium channel property.
Assuntos
Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Shal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Movimento Celular , Receptores ErbB/genética , Regulação da Expressão Gênica/fisiologia , Potenciais da Membrana , Neuregulina-1/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4 , Canais de Potássio Shal/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genéticaRESUMO
Resveratrol (REV) is a naturally occurring phytoalexin that inhibits neuronal K⺠channels; however, the molecular mechanisms behind the effects of REV and the relevant α-subunit are not well defined. With the use of patch-clamp technique, cultured cerebellar granule cells, and HEK-293 cells transfected with the K(v)2.1 and K(v)2.2 α-subunits, we investigated the effect of REV on K(v)2.1 and K(v)2.2 α-subunits. Our data demonstrated that REV significantly suppressed Kv2.2 but not Kv2.1 currents with a fast, reversible, and mildly concentration-dependent manner and shifted the activation or inactivation curve of Kv2.2 channels. Activating or inhibiting the cAMP/PKA pathway did not abolish the inhibition of K(v)2.2 current by REV. In contrast, activation of PKC with phorbol 12-myristate 13-acetate mimicked the inhibitory effect of REV on K(v)2.2 by modifying the activation or inactivation properties of Kv2.2 channels and eliminated any further inhibition by REV. PKC and PKC-α inhibitor completely eliminated the REV-induced inhibition of K(v)2.2. Moreover, the effect of REV on K(v)2.2 was reduced by preincubation with antagonists of GPR30 receptor and shRNA for GPR30 receptor. Western blotting results indicated that the levels of PKC-α and PKC-ß were significantly increased in response to REV application. Our data reveal, for the first time, that REV inhibited K(v)2.2 currents through PKC-dependent pathways and a nongenomic action of the oestrogen receptor GPR30.
Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Potássio Shab/antagonistas & inibidores , Estilbenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Resveratrol , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.
Assuntos
Cerebelo/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptor de Insulina/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células HeLa , Humanos , Cinética , Modelos Biológicos , Técnicas de Patch-Clamp , Ratos , Regulação para CimaRESUMO
Neuritin is a new member of the neurotrophic factor family, whose gene is named cpg15 (candidate plasticity-related gene 15) and can be activated by neural activity or neurotrophins (NTs). Experiments show that neuritin is able to promote the growth and branching of neurites, and plays an important role in neuronal plasticity and neuronal regeneration. Recent studies have proved that neuritin is not only involved in the regulation of various physiological functions in the nervous system, but also related in angiogenesis and tumorigenesis. Here we review the mechanisms involved in cpg15 expression and regulation, biological effects of neuritin, and how neuritin plays its biological activities. The hot issues and difficulties in the study of neuritin are also discussed.
Assuntos
Neuritos/fisiologia , Plasticidade Neuronal , Neuropeptídeos/fisiologia , Proteínas Ligadas por GPI/fisiologia , HumanosRESUMO
Members of the transforming growth factor-ß (TGF-ß) family of cytokines are involved in diverse physiological processes. Although TGF-ß is known to play multiple roles in the mammalian central nervous system (CNS), its role in neuronal development has not been explored. We have studied the effects of TGF-ß1 on the electrophysiological properties and maturation of rat primary cerebellar granule neurons (CGNs). We report that incubation with TGF-ß1 increased delayed rectifier potassium current (I(K) ) amplitudes in a dose- and time-dependent manner, but did not affect the kinetic properties of the channel. Exposure to TGF-ß1 (20 ng/ml) for 36 h led to a 37.2% increase in I(K) amplitudes. There was no significant change in mRNA levels for the key Kv2.1 channel protein, but translation blockade abolished the increase in protein levels and channel activity, arguing that TGF-ß1 increases I(K) amplitudes by upregulating translation of the Kv2.1 channel protein. Although TGF-ß1 treatment did not affect the activity of protein kinase A (PKA), and constitutive activation of PKA with forskolin failed to increase I(K) amplitudes, inhibition of PKA prevented channel upregulation, demonstrating that basal PKA activity is required for TGF-ß1 stimulation of I(K) channel activity. TGF-ß1 also promoted the expression of the γ-aminobutyric acid (GABA(A) ) receptor α6 subunit, a marker of mature CGNs, and calcium influx during depolarizing stimuli was reduced by TGF-ß1. The effects of TGF-ß1 were only observed during a narrow developmental time-window, and were lost as CGNs matured. These findings suggest that TGF-ß1 upregulates K(+) channel expression and I(K) currents and thereby promotes CGN maturation.
Assuntos
Neurônios/metabolismo , Canais de Potássio Shab/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Western Blotting , Células Cultivadas , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologiaRESUMO
Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.