Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8015): 59-63, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750357

RESUMO

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

2.
Phys Rev Lett ; 132(6): 062501, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394570

RESUMO

We present a parameter-free ab initio calculation of the α-particle monopole transition form factor in the framework of nuclear lattice effective field theory. We use a minimal nuclear interaction that was previously used to reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. The results for the monopole transition form factor are in good agreement with recent precision data from Mainz.

3.
Phys Rev Lett ; 132(23): 232502, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905669

RESUMO

We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.

4.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701465

RESUMO

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

5.
Phys Rev Lett ; 131(24): 242503, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181156

RESUMO

Quantum Monte Carlo simulations are powerful and versatile tools for the quantum many-body problem. In addition to the usual calculations of energies and eigenstate observables, quantum Monte Carlo simulations can in principle be used to build fast and accurate many-body emulators using eigenvector continuation or design time-dependent Hamiltonians for adiabatic quantum computing. These new applications require something that is missing from the published literature, an efficient quantum Monte Carlo scheme for computing the inner product of ground state eigenvectors corresponding to different Hamiltonians. In this work, we introduce an algorithm called the floating block method, which solves the problem by performing Euclidean time evolution with two different Hamiltonians and interleaving the corresponding time blocks. We use the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies of ^{4}He, ^{8}Be, ^{12}C, and ^{16}O nuclei over a range of local and nonlocal interaction couplings. From the emulator data, we identify the quantum phase transition line from a Bose gas of alpha particles to a nuclear liquid.

6.
Phys Rev Lett ; 128(5): 052002, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179940

RESUMO

We present a combined analysis of the electromagnetic form factors of the nucleon in the space- and timelike regions using dispersion theory. Our framework provides a consistent description of the experimental data over the full range of momentum transfer, in line with the strictures from analyticity and unitarity. The statistical uncertainties of the extracted form factors are estimated using the bootstrap method, while systematic errors are determined from variations of the spectral functions. We also perform a high-precision extraction of the nucleon radii and find good agreement with previous analyses of spacelike data alone. For the proton charge radius, we find r_{E}^{p}=0.840_{-0.002}^{+0.003} _{-0.002}^{+0.002} fm, where the first error is statistical and the second one is systematic. The Zemach radius and third moment are in agreement with Lamb shift measurements and hyperfine splittings. The combined dataset of space- and timelike data disfavors a zero crossing of µ_{p}G_{E}^{p}/G_{M}^{p} in the spacelike region. Finally, we discuss the status and perspectives of modulus and phase of the form factors in the timelike region in the context of future experiments, as well as the onset of perturbative QCD.

7.
Phys Rev Lett ; 128(24): 242501, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776463

RESUMO

While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to ^{16}O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.

8.
Phys Rev Lett ; 126(19): 192001, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047611

RESUMO

The lightest charmed scalar meson is known as the D_{0}^{*}(2300), which is one of the earliest new hadron resonances observed at modern B factories. We show here that the parameters assigned to the lightest scalar D meson are in conflict with the precise LHCb data of the decay B^{-}→D^{+}π^{-}π^{-}. On the contrary, these data can be well described by an unitarized chiral amplitude containing a much lighter charmed scalar meson, the D_{0}^{*}(2100). We also extract the low-energy S-wave Dπ phase of the decay B^{-}→D^{+}π^{-}π^{-} from the data in a model-independent way, and show that its difference from the Dπ scattering phase shift can be traced back to an intermediate ρ^{-} exchange. Our work highlights that an analysis of data consistent with chiral symmetry, unitarity, and analyticity is mandatory in order to extract the properties of the ground-state scalar mesons in the singly heavy sector correctly, in analogy to the light scalar mesons f_{0}(500) and K_{0}^{*}(700).

9.
Phys Rev Lett ; 127(6): 062501, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420321

RESUMO

The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, N_{c}. However this large-N_{c} symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale that we call Λ_{large-N_{c}}. We show that the large-N_{c} derivation requires a momentum resolution scale of Λ_{large-N_{c}}∼500 MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the spectrum of ^{30}P and applications to nuclear forces, nuclear structure calculations, and three-nucleon interactions.

10.
Nature ; 528(7580): 111-4, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632590

RESUMO

Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of quarks and gluons.

11.
Phys Rev Lett ; 125(19): 192502, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216564

RESUMO

We propose a new Monte Carlo method called the pinhole trace algorithm for ab initio calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first ab initio study of the density and temperature dependence of nuclear clustering.

12.
Phys Rev Lett ; 124(7): 072001, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142337

RESUMO

Three hidden-charm pentaquark P_{c} states, P_{c}(4312), P_{c}(4440), and P_{c}(4457) were revealed in the Λ_{b}^{0}→J/ψpK^{-} process measured by LHCb using both run I and run II data. Their nature is under lively discussion, and their quantum numbers have not been determined. We analyze the J/ψp invariant mass distributions under the assumption that the crossed-channel effects provide a smooth background. For the first time, such an analysis is performed employing a coupled-channel formalism with the scattering potential involving both one-pion exchange as well as short-range operators constrained by heavy quark spin symmetry. We find that the data can be well described in the hadronic molecular picture, which predicts seven Σ_{c}^{(*)}D[over ¯]^{(*)} molecular states in two spin multiplets, such that the P_{c}(4312) is mainly a Σ_{c}D[over ¯] bound state with J^{P}=1/2^{-}, while P_{c}(4440) and P_{c}(4457) are Σ_{c}D[over ¯]^{*} bound states with quantum numbers 3/2^{-} and 1/2^{-}, respectively. We also show that there is evidence for a narrow Σ_{c}^{*}D[over ¯] bound state in the data which we call P_{c}(4380), different from the broad one reported by LHCb in 2015. With this state included, all predicted Σ_{c}D[over ¯], Σ_{c}^{*}D[over ¯], and Σ_{c}D[over ¯]^{*} hadronic molecules are seen in the data, while the missing three Σ_{c}^{*}D[over ¯]^{*} states are expected to be found in future runs of the LHC or in photoproduction experiments.

13.
Phys Rev Lett ; 122(21): 211802, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283352

RESUMO

We derive a Feynman-Hellmann theorem relating the second-order nucleon energy shift resulting from the introduction of periodic source terms of electromagnetic and isovector axial currents to the parity-odd nucleon structure function F_{3}^{N}. It is a crucial ingredient in the theoretical study of the γW and γZ box diagrams that are known to suffer from large hadronic uncertainties. We demonstrate that for a given Q^{2} one only needs to compute a small number of energy shifts in order to obtain the required inputs for the box diagrams. Future lattice calculations based on this approach may shed new light on various topics in precision physics including the refined determination of the Cabibbo-Kobayashi-Maskawa matrix elements and the weak mixing angle.

14.
Phys Rev Lett ; 119(22): 222505, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286765

RESUMO

Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (^{4}He nuclei) within the interior of a larger nucleus. In this Letter, we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in ^{12}C, ^{14}C, and ^{16}C. The structural similarities among the carbon isotopes suggest that ^{14}C and ^{16}C have excitations analogous to the well-known Hoyle state resonance in ^{12}C.

15.
Phys Rev Lett ; 117(6): 069902, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27541479

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.114.091602.

16.
Phys Rev Lett ; 117(13): 132501, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715077

RESUMO

How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (^{4}He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.

17.
Phys Rev Lett ; 115(18): 185301, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565472

RESUMO

We investigate the attractive Fermi polaron problem in two dimensions using nonperturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only small sign oscillations for systems with a single impurity. As a benchmark of the method, we calculate the universal polaron energy in three dimensions in the scale-invariant unitarity limit and find agreement with published results. We then present the first fully nonperturbative calculations of the polaron energy in two dimensions and density correlations between the impurity and majority particles in the limit of zero-range interactions. We find evidence for a smooth crossover transition from fermionic quasiparticle to molecular state as a function of the interaction strength.

18.
Phys Rev Lett ; 114(9): 091602, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793797

RESUMO

The spectrum of a bound state of three identical particles with a mass m in a finite cubic box is studied. It is shown that in the unitary limit, the energy shift of a shallow bound state is given by ΔE=c(κ^{2}/m)(κL)^{-3/2}|A|^{2}exp(-2κL/sqrt[3]), where κ is the bound-state momentum, L is the box size, |A|^{2} denotes the three-body analog of the asymptotic normalization coefficient of the bound state wave function, and c is a numerical constant. The formula is valid for κL≫1.

19.
Phys Rev Lett ; 115(19): 192301, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588373

RESUMO

We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ(1232) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

20.
Phys Rev Lett ; 115(9): 092301, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371645

RESUMO

We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0) MeV=(59.1±3.5) MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa