Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(10): 5942-5964, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32628332

RESUMO

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO2 ], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2 ], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2 ]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.


Assuntos
Mudança Climática , Zea mays , Fertilizantes , Mali , Nitrogênio
2.
Horm Behav ; 56(1): 108-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19362559

RESUMO

We examined whether interpersonal closeness increases salivary progesterone. One hundred and sixty female college students (80 dyads) were randomly assigned to participate in either a closeness task with a partner versus a neutral task with a partner. Those exposed to the closeness induction had higher levels of progesterone relative to those exposed to the neutral task. Across conditions, progesterone increase one week later predicted the willingness to sacrifice for the partner. These results are discussed in terms of the links between social contact, stress, and health.


Assuntos
Relações Interpessoais , Progesterona/análise , Saliva/química , Análise de Variância , Feminino , Humanos , Hidrocortisona/análise , Radioisótopos do Iodo , Testes Neuropsicológicos , Radioimunoensaio , Comportamento Social
3.
Biol Psychol ; 74(1): 104-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16904811

RESUMO

In four studies, each with multiple hormone assessments before and after positive emotion-arousing laboratory manipulations, salivary progesterone positively correlated with salivary cortisol in men and women taking hormonal contraceptives but not in freely cycling women. This is consistent with the idea that progesterone in men is largely adrenal in origin, whereas in women its sources are both ovarian and adrenal. In addition, bi-partial correlations revealed that change in cortisol was positively related to change in progesterone levels; this effect was stronger in men than in women. These findings suggest that progesterone is released from the adrenal along with cortisol in humans, due to general adrenal activation and/or possibly as an additional negative feedback mechanism to down-regulate the stress response.


Assuntos
Hidrocortisona/análise , Progesterona/análise , Saliva/química , Adulto , Anticoncepcionais Orais Hormonais/administração & dosagem , Feminino , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Progesterona/metabolismo
4.
Front Plant Sci ; 8: 1504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928756

RESUMO

Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.

5.
Front Plant Sci ; 8: 731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539929

RESUMO

Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally affected by increased SOC in the dryland agro-ecosystems studied, but increased in the irrigated agro-ecosystem. Therefore, we show that under increased SOC concentration, N cycling contributes both positively and negatively to ecosystem services depending on supply, while the effects on soil physical properties are negligible.

6.
Front Plant Sci ; 7: 1017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462340

RESUMO

The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha(-1) per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.

7.
Front Plant Sci ; 7: 661, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242862

RESUMO

Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.

8.
Arch Pediatr Adolesc Med ; 166(9): 803-7, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22566515

RESUMO

OBJECTIVE To identify when youth are most likely to start using prescription pain relievers to get high or for other unapproved indications outside the boundaries of what a prescribing physician might intend (ie, extramedical use). DESIGN Cross-sectional surveys of adolescent cohorts, 2004 to 2008. SETTING The United States. PARTICIPANTS Large nationally representative samples of youth in the United States who had been assessed for the 2004 through 2008 National Survey on Drug Use and Health, yielding data from 138 729 participants aged 12 to 21 years. MAIN OUTCOME MEASURES Estimated age-specific risk of starting extramedical use of prescription pain relievers, year by year, and confirmation of age at peak risk by tracing the experience of individual cohorts during this period. RESULTS The estimated peak risk of starting extramedical use of prescription pain relievers occurs in midadolescence, well before the college years. The age at peak risk is 16 years, when an estimated 2% to 3% become newly incident users. Smaller risk estimates are observed at age 12 to 14 years and at age 19 to 21 years. CONCLUSIONS For initiatives to prevent youth from using prescription pain relievers to get high or for other unapproved indications, a focus on the last year of high school and the post-secondary school years may be too little too late. Practice-based approaches are needed in addition to public health interventions based on effective alcohol and tobacco prevention programs during the earlier adolescent years.

9.
Soc Cogn Affect Neurosci ; 3(4): 333-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19015083

RESUMO

This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Emoções/fisiologia , Expressão Facial , Motivação , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Oxigênio/sangue , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa