Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191935

RESUMO

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Assuntos
Neuroimagem , Software , Neuroimagem/métodos , Humanos , Interface Usuário-Computador , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
2.
Neuroimage ; 283: 120431, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914091

RESUMO

Cortical reorganization and its potential pathological significance are being increasingly studied in musculoskeletal disorders such as chronic low back pain (CLBP) patients. However, detailed sensory-topographic maps of the human back are lacking, and a baseline characterization of such representations, reflecting the somatosensory organization of the healthy back, is needed before exploring potential sensory map reorganization. To this end, a novel pneumatic vibrotactile stimulation method was used to stimulate paraspinal sensory afferents, while studying their cortical representations in unprecedented detail. In 41 young healthy participants, vibrotactile stimulations at 20 Hz and 80 Hz were applied bilaterally at nine locations along the thoracolumbar axis while functional magnetic resonance imaging (fMRI) was performed. Model-based whole-brain searchlight representational similarity analysis (RSA) was used to investigate the organizational structure of brain activity patterns evoked by thoracolumbar sensory inputs. A model based on segmental distances best explained the similarity structure of brain activity patterns that were located in different areas of sensorimotor cortices, including the primary somatosensory and motor cortices and parts of the superior parietal cortex, suggesting that these brain areas process sensory input from the back in a "dermatomal" manner. The current findings provide a sound basis for testing the "cortical map reorganization theory" and its pathological relevance in CLBP.


Assuntos
Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Córtex Somatossensorial/fisiologia
3.
Hum Brain Mapp ; 43(16): 4943-4953, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35979921

RESUMO

Topographic organisation is a hallmark of vertebrate cortex architecture, characterised by ordered projections of the body's sensory surfaces onto brain systems. High-resolution functional magnetic resonance imaging (fMRI) has proven itself as a valuable tool to investigate the cortical landscape and its (mal-)adaptive plasticity with respect to various body part representations, in particular extremities such as the hand and fingers. Less is known, however, about the cortical representation of the human back. We therefore validated a novel, MRI-compatible method of mapping cortical representations of sensory afferents of the back, using vibrotactile stimulation at varying frequencies and paraspinal locations, in conjunction with fMRI. We expected high-frequency stimulation to be associated with differential neuronal activity in the primary somatosensory cortex (S1) compared with low-frequency stimulation and that somatosensory representations would differ across the thoracolumbar axis. We found significant differences between neural representations of high-frequency and low-frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral S1 sub-regions, and in regions of the primary motor cortex (M1). High-frequency stimulation preferentially activated Brodmann Area (BA) regions BA3a and BA4p, whereas low-frequency stimulation was more encoded in BA3b and BA4a. Moreover, we found clear topographic differences in S1 for representations of the upper and lower back during high-frequency stimulation. We present the first neurobiological validation of a method for establishing detailed cortical maps of the human back, which might serve as a novel tool to evaluate the pathological significance of neuroplastic changes in clinical conditions such as chronic low back pain.


Assuntos
Mapeamento Encefálico , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico/métodos , Dedos , Imageamento por Ressonância Magnética/métodos , Mãos/fisiologia
4.
J Oral Rehabil ; 46(6): 549-555, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30802997

RESUMO

BACKGROUND: Quantification of dentin hypersensitivity (DH) is challenging and requires standardised, graded stimulation by natural-like stimuli. OBJECTIVE: The present study aimed at identifying DH subjects and longitudinally monitoring their pain thresholds by cold air quantitative sensory testing (QST). METHODS: Subject recruitment started with an online DH questionnaire. Respondents were screened by dental air stimulation. Sensitising and habituating subjects were excluded. A recently developed stimulation device was employed for cold air QST. Single tooth DH was verified by applying an equi-intense stimulus to a control tooth. Descriptive statistics were applied for subject characteristics. Mean values were calculated for the stimulation parameters temperature and air flow. Reliability of temperatures for detecting pain and for evoking moderate pain over multiple time points within a 3-week period was analysed by two-way random single- and average-measure intra-class correlation coefficients. RESULTS: A total of 353 persons completed the online DH questionnaire of which 117 were screened. Forty-four passed the screening, yet 15 were excluded for various reasons. Twenty-nine subjects were monitored by QST across 3 weeks. Results revealed a high intra-individual stability of the temperature inducing moderate to strong pain intensity (MPI) (single-measure ICC of TMPI 0.83, P < 0.001). Mean TMPI was -13.69°C, yet it highly varied among the 29 subjects (SD ± 10.04°C). CONCLUSIONS: Using a novel approach, namely dental QST based on cold air stimuli, we present evidence for temporally stable DH perceptions over a 3-week period. The method fulfils international guideline requirements and is recommendable for obtaining valid results when testing various interventions for DH management.


Assuntos
Sensibilidade da Dentina , Temperatura Baixa , Humanos , Dor , Medição da Dor , Limiar da Dor , Reprodutibilidade dos Testes , Limiar Sensorial
5.
J Neurophysiol ; 115(3): 1730-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26792885

RESUMO

Drug effects of loco-regional anesthetics are commonly measured by unidimensional pain rating scales. These scales require subjects to transform their perceptual correlates of stimulus intensities onto a visual, verbal, or numerical construct that uses a unitless cognitive reference frame. The conceptual understanding and execution of this magnitude estimation task may vary among individuals and populations. To circumvent inherent shortcomings of conventional experimental pain scales, this study used a novel perceptual reference approach to track subjective sensory perceptions during onset of an analgesic nerve block. In 34 male subjects, nociceptive electric stimuli of 1-ms duration were repetitively applied to left (target) and right (reference) mandibular canines every 5 s for 600 s, with a side latency of 1 ms. Stimulus strength to the target canine was programmed to evoke a tolerable pain intensity perception and remained constant at this level throughout the experiment. A dose of 0.6 ml of articaine 4% was submucosally injected at the left mental foramen. Subjects then reported drug effects by adjusting the stimulus strength (in milliamperes) to the reference tooth, so that the perceived intensity in the reference tooth was equi-intense to the target tooth. Pain and stimulus perception offsets were indicated by subjects. Thus, the current approach for matching the sensory experience in one anatomic location after regional anesthesia allows detailed tracking of evolving perceptual changes in another location. This novel perceptual reference approach facilitates direct and accurate quantification of analgesic effects with high temporal resolution. We propose using this method for future experimental investigations of analgesic/anesthetic drug efficacy.


Assuntos
Anestésicos Locais/farmacologia , Carticaína/farmacologia , Medição da Dor/métodos , Percepção da Dor , Adulto , Anestésicos Locais/administração & dosagem , Anestésicos Locais/uso terapêutico , Carticaína/administração & dosagem , Carticaína/uso terapêutico , Dente Canino/efeitos dos fármacos , Dente Canino/inervação , Humanos , Masculino , Dor Nociceptiva/tratamento farmacológico , Medição da Dor/normas , Limiar da Dor , Valores de Referência
6.
Hum Brain Mapp ; 35(8): 3962-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24464423

RESUMO

Eight decades after Penfield's discovery of the homunculus only sparse evidence exists on the cortical representation of the lumbar spine. The aim of our investigation was the description of the lumbar spine's cortical representation in healthy subjects during the application of measured manual pressure. Twenty participants in the prone position were investigated during functional magnetic resonance imaging (fMRI). An experienced manual therapist applied non-painful, posterior-to-anterior (PA) pressure on three lumbar spinous processes (L1, L3, and L5). The pressure (30 N) was monitored and controlled by sensors. The randomized stimulation protocol consisted of 68 pressure stimuli of 5 s duration. Blood oxygenation level dependent (BOLD) responses were analyzed in relation to the lumbar stimulations. The results demonstrate that controlled PA pressure on the lumbar spine induced significant activation patterns. The major new finding was a strong and consistent activation bilaterally in the somatosensory cortices (S1 and S2). In addition, bilateral activation was located medially in the anterior cerebellum. The activation pattern also included other cortical areas probably related to anticipatory postural adjustments. These revealed stable somatosensory maps of the lumbar spine in healthy subjects can subsequently be used as a baseline to investigate cortical and subcortical reorganization in low back pain patients.


Assuntos
Cerebelo/fisiologia , Córtex Somatossensorial/fisiologia , Medula Espinal/fisiologia , Percepção do Tato/fisiologia , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Lateralidade Funcional , Humanos , Vértebras Lombares , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Física , Pressão , Decúbito Ventral/fisiologia
7.
J Integr Neurosci ; 13(1): 121-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24738542

RESUMO

The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.


Assuntos
Capnografia , Hiperalgesia/fisiopatologia , Dor Lombar/complicações , Limiar da Dor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Análise de Variância , Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/fisiologia , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Medição da Dor , Estimulação Física , Adulto Jovem
8.
J Manipulative Physiol Ther ; 37(1): 32-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24229849

RESUMO

OBJECTIVE: The purpose of this study was to develop and test a clinically relevant method to mechanically stimulate lumbar functional spinal units while recording brain activity by means of functional magnetic resonance imaging (MRI). METHODS: Subjects were investigated in the prone position with their face lying on a modified stabilization pillow. To minimize head motion, the pillow was fixed to the MRI headrest, and supporting straps were attached around the shoulders. An experienced manual therapist applied controlled, nonpainful pressure stimuli to 10 healthy subjects at 3 different lumbar vertebrae (L1, L3, and L5). Pressure applied to the thumb was used as a control. The stimulation consisted of posterior to anterior (PA) pressure movement. The therapist followed a randomized stimulation protocol projected onto a screen in the MRI room. Blood oxygenation level-dependent responses were analyzed in relation to the lumbar and the thumb stimulations. The study was conducted by the Chiropractic Department, Faculty of Medicine, University of Zürich, Switzerland. RESULTS: No participant reported any discomfort due to the prone-lying position or use of the pillow. Importantly, PA-induced pressure produced only minimal head movements. Stimulation of the lumbar spinous processes revealed bilateral neural responses in medial parts of the postcentral gyrus (S1). Additional activity was observed in the secondary somatosensory cortex (S2), posterior parts of the insular cortex, different parts of the cingulate cortex, and the cerebellum. Thumb stimulations revealed activation only in lateral parts of the contralateral S1. CONCLUSION: The current study demonstrates the feasibility of the application of PA pressure on lumbar spinous processes in an MRI environment. This approach may serve as a promising tool for further investigations regarding neuroplastic changes in chronic low back pain subjects.


Assuntos
Encéfalo/fisiologia , Vértebras Lombares/fisiologia , Imageamento por Ressonância Magnética , Estimulação Física , Decúbito Ventral , Adulto , Feminino , Humanos , Masculino , Estimulação Física/métodos
9.
J Clin Periodontol ; 39(5): 441-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417324

RESUMO

AIM: Dentine hypersensitivity (DH) is characterized by a short, sharp pain arising from exposed dentin. Most published literature reports on peripheral neural aspects of this pain condition. The current investigation focused on differential cerebral activity elicited by stimulation of sensitive and insensitive teeth by means of natural air stimuli. MATERIALS AND METHODS: Five graded stimulus strengths were randomly applied by means of a multi-injector air jet delivery system, each followed by an individual rating of perceived stimulus intensity. Brain activity was analysed by functional magnetic resonance imaging (fMRI). RESULTS: Stimulation of sensitive teeth induced significant activation in the thalamus, somatosensory cortices (SI & SII), anterior, middle and posterior insular cortices, anterior mid cingulate cortex, perigenual anterior cingulate cortex and frontal regions (BA10 and BA46). Differential responses to DH and painless perceptions were observed in the anterior insula and anterior midcingulate cortex. CONCLUSION: For the first time, this fMRI study demonstrates the feasibility of investigating cerebral processes related to DH evoked by natural (air) stimuli. Our neuroimaging data additionally provide evidence that differential activity in the anterior Insula (aIC) and anterior midcingulate cortex (aMCC) may represent clinically relevant pain experienced by DH patients.


Assuntos
Encéfalo/fisiopatologia , Sensibilidade da Dentina/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Ar , Córtex Cerebral/fisiopatologia , Imagem Ecoplanar/métodos , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Limiar da Dor/fisiologia , Estimulação Física/instrumentação , Estimulação Física/métodos , Córtex Pré-Frontal/fisiopatologia , Limiar Sensorial/fisiologia , Córtex Somatossensorial/fisiopatologia , Tálamo/fisiopatologia , Adulto Jovem
10.
J Biomech ; 137: 111102, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489234

RESUMO

Musculoskeletal models have the potential to improve diagnosis and optimize clinical treatment by predicting accurate outcomes on an individual basis. However, the subject-specific modeling of spinal alignment is often strongly simplified or is based on radiographic assessments, exposing subjects to unnecessary radiation. We therefore developed and introduced a novel skin marker-based approach for modeling subject-specific spinal alignment and evaluated its feasibility by comparing the predicted L1/L2 spinal loads during various functional activities with the loads predicted by the generically scaled models as well as with in vivo measured data obtained from the OrthoLoad database. Spinal loading simulations resulted in considerably higher compressive forces for both scaling approaches over all simulated activities, and AP shear forces that were closer or similar to the in vivo data for the subject-specific approach during upright standing activities and for the generic approach during activities that involved large flexions. These results underline the feasibility of the proposed method and associated workflow for inter- and intra-subject investigations using musculoskeletal simulations. When implemented into standard model scaling workflows, it is expected to improve the accuracy of muscle activity and joint loading simulations, which is crucial for investigations of treatment effects or pathology-dependent deviations.


Assuntos
Modelos Biológicos , Coluna Vertebral , Fenômenos Biomecânicos , Estudos de Viabilidade , Humanos , Amplitude de Movimento Articular/fisiologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia , Suporte de Carga/fisiologia
11.
Front Psychol ; 13: 1006034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467232

RESUMO

Background: Fear of movement is thought to interfere with the recovery from low back pain (LBP). To date, the relationship between fear of movement and postural balance has not been adequately elucidated. Recent findings suggest that more specific fears need to be assessed and put in relation to a specific movement task. We propose that the fear to bend the trunk in a certain direction is distinctly related to the amount of postural sway in different directions. Therefore, our aim was to investigate whether fear of movement in general and fear of bending the trunk in a certain plane is related to postural sway. Methods: Data was collected from participants with LBP during two assessments ~3 weeks apart. Postural sway was measured with a force-platform during quiet standing with the eyes closed. Fear of movement was assessed with an abbreviated version of the Tampa Scale of Kinesiophobia (TSK-11) and custom items referring to fear of bending the trunk in the sagittal and the frontal plane. Results: Based on data from 25 participants, fear of bending the trunk in the frontal plane was positively related to displacement in the sagittal and frontal plane and to velocity in the frontal plane (χ 2 = 4.35, p = 0.04; χ 2 = 8.15, p = 0.004; χ 2 = 9.79, p = 0.002). Fear of bending the trunk in the sagittal plane was not associated with any direction specific measure of sway. A positive relation of the TSK-11 with velocity of the frontal plane (χ 2 = 7.14, p = 0.008) was found, but no association with undirected measures of sway. Discussion: Fear of bending the trunk in the frontal plane may be especially relevant to postural sway under the investigated stance conditions. It is possible that fear of bending the trunk in the frontal plane could interfere with balance control at the hip, shifting the weight from side to side to control balance. Conclusion: For the first time the directional relationship of fear of movement and postural sway was studied. Fear of bending the trunk in the frontal plane was positively associated with several measures of postural sway.

12.
J Electromyogr Kinesiol ; 65: 102678, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696973

RESUMO

Fear-avoidance beliefs, particularly the fear of lifting with a flexed spine, are associated with reduced spinal motion during object lifting. Low back pain patients thereby also showed potentially clinically relevant changes in the spatial distribution of back muscle activity, but it remains unknown whether such associations are also present in pain-free individuals. This cross-sectional observational study investigated the relationship between fear-avoidance beliefs and the spatial distribution of lumbar paraspinal muscle activity in pain-free individuals during a repetitive lifting task. Thirty participants completed two pain-related fear questionnaires and performed 25 repetitions of lifting a 5 kg-box from a lower to an upper shelf and back, while multi-channel electromyographic signals were recorded bilaterally from the lumbar erector spinae muscles. Changes in spatial distribution were defined as the differences in vertical position of the weighted centroids of muscle activity (centroid shift) between the first and last few repetitions. Linear regression analyses were performed to examine the relationships between centroid shift and fear-avoidance belief scores. Fear of lifting an object with a flexed spine was negatively associated with erector spinae activity centroid shift (R2 adj. = 0.1832; p = 0.045), which might be an expression of behavioral alterations to prevent the back from possible harm.


Assuntos
Remoção , Músculos Paraespinais , Estudos Transversais , Eletromiografia , Medo , Humanos , Músculos Paraespinais/fisiologia , Transtornos Fóbicos
13.
Front Pain Res (Lausanne) ; 2: 715219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295522

RESUMO

Persistent low back pain (LBP) is a major health issue, and its treatment remains challenging due to a lack of pathophysiological understanding. A better understanding of LBP pathophysiology has been recognized as a research priority, however research on contributing mechanisms to LBP is often limited by siloed research within different disciplines. Novel cross-disciplinary approaches are necessary to fill important knowledge gaps in LBP research. This becomes particularly apparent when considering new theories about a potential role of changes in movement behavior (motor control) in the development and persistence of LBP. First evidence points toward the existence of different motor control strategy phenotypes, which are suggested to have pain-provoking effects in some individuals driven by interactions between neuroplastic, psychological and biomechanical factors. Yet, these phenotypes and their role in LBP need further validation, which can be systematically tested using an appropriate cross-disciplinary approach. Therefore, we propose a novel approach, connecting methods from neuroscience and biomechanics research including state-of-the-art optical motion capture, musculoskeletal modeling, functional magnetic resonance imaging and assessments of psychological factors. Ultimately, this cross-disciplinary approach might lead to the identification of different motor control strategy phenotypes with the potential to translate into clinical research for better treatment options.

14.
Front Bioeng Biotechnol ; 9: 769117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805121

RESUMO

Lifting up objects from the floor has been identified as a risk factor for low back pain, whereby a flexed spine during lifting is often associated with producing higher loads in the lumbar spine. Even though recent biomechanical studies challenge these assumptions, conclusive evidence is still lacking. This study therefore aimed at comparing lumbar loads among different lifting styles using a comprehensive state-of-the-art motion capture-driven musculoskeletal modeling approach. Thirty healthy pain-free individuals were enrolled in this study and asked to repetitively lift a 15 kg-box by applying 1) a freestyle, 2) a squat and 3) a stoop lifting technique. Whole-body kinematics were recorded using a 16-camera optical motion capture system and used to drive a full-body musculoskeletal model including a detailed thoracolumbar spine. Continuous as well as peak compressive, anterior-posterior shear and total loads (resultant load vector of the compressive and shear load vectors) were calculated based on a static optimization approach and expressed as factor body weight (BW). In addition, lumbar lordosis angles and total lifting time were calculated. All parameters were compared among the lifting styles using a repeated measures design. For each lifting style, loads increased towards the caudal end of the lumbar spine. For all lumbar segments, stoop lifting showed significantly lower compressive and total loads (-0.3 to -1.0BW) when compared to freestyle and squat lifting. Stoop lifting produced higher shear loads (+0.1 to +0.8BW) in the segments T12/L1 to L4/L5, but lower loads in L5/S1 (-0.2 to -0.4BW). Peak compressive and total loads during squat lifting occurred approximately 30% earlier in the lifting cycle compared to stoop lifting. Stoop lifting showed larger lumbar lordosis range of motion (35.9 ± 10.1°) than freestyle (24.2 ± 7.3°) and squat (25.1 ± 8.2°) lifting. Lifting time differed significantly with freestyle being executed the fastest (4.6 ± 0.7 s), followed by squat (4.9 ± 0.7 s) and stoop (5.9 ± 1.1 s). Stoop lifting produced lower total and compressive lumbar loads than squat lifting. Shear loads were generally higher during stoop lifting, except for the L5/S1 segment, where anterior shear loads were higher during squat lifting. Lifting time was identified as another important factor, considering that slower speeds seem to result in lower loads.

15.
Pain ; 162(6): 1621-1631, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33323888

RESUMO

ABSTRACT: There is a long-held belief that physical activities such as lifting with a flexed spine is generally harmful for the back and can cause low back pain (LBP), potentially reinforcing fear-avoidance beliefs underlying pain-related fear. In patients with chronic LBP, pain-related fear has been shown to be associated with reduced lumbar range of motion during lifting, suggesting a protective response to pain. However, despite short-term beneficial effects for tissue health, recent evidence suggests that maintaining a protective trunk movement strategy may also pose a risk for (persistent) LBP due to possible pronociceptive consequences of altered spinal motion, potentially leading to increased loading on lumbar tissues. Yet, it is unknown if similar protective movement strategies already exist in pain-free individuals, which would yield potential insights into the role of fear-avoidance beliefs in motor behavior in the absence of pain. Therefore, the aim of this study is to test whether fear-avoidance beliefs influence spinal motion during lifting in a healthy cohort of pain-free adults without a history of chronic pain. The study subjects (N = 57) filled out several pain-related fear questionnaires and were asked to perform a lifting task (5kg-box). High-resolution spinal kinematics were assessed using an optical motion capturing system. Time-sensitive analyses were performed based on statistical parametric mapping. The results demonstrated time-specific and negative relationships between self-report measures of pain-related fear and lumbar spine flexion angles during lifting, indicating potential unfavorable interactions between psychological factors and spinal motion during lifting in pain-free subjects.


Assuntos
Remoção , Dor Lombar , Adulto , Medo , Humanos , Movimento , Amplitude de Movimento Articular
16.
Front Physiol ; 11: 562557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982803

RESUMO

The objective of this study was to determine the response of the lumbar spinal motor control in different gravitational conditions. This was accomplished by measuring indicators of lumbar motor control, specifically lumbar spinal stiffness, activity of lumbar extensor and flexor muscles and lumbar curvature, in hypergravity and microgravity during parabolic flights. Three female and five male subjects participated in this study. The mean age was 35.5 years (standard deviation: 8.5 years). Spinal stiffness of the L3 vertebra was measured using impulse response; activity of the erector spinae, multifidi, transversus abdominis, and psoas muscles was recorded using surface electromyography; and lumbar curvature was measured using distance sensors mounted on the back-plate of a full-body harness. An effect of gravity condition on spinal stiffness, activity of all muscles assessed and lumbar curvature (p's < 0.007) was observed (Friedman tests). Post hoc analysis showed a significant reduction in stiffness during hypergravity (p < 0.001) and an increase in stiffness during microgravity (p < 0.001). Activity in all muscles significantly increased during hypergravity (p's < 0.001). During microgravity, the multifidi (p < 0.002) and transversus abdominis (p < 0.001) increased significantly in muscle activity while no significant difference was found for the psoas (p = 0.850) and erector spinae muscles (p = 0.813). Lumbar curvature flattened in hypergravity as well as microgravity, albeit in different ways: during hypergravity, the distance to the skin decreased for the upper (p = 0.016) and the lower sensor (p = 0.036). During microgravity, the upper sensor showed a significant increase (p = 0.016), and the lower showed a decrease (p = 0.005) in distance. This study emphasizes the role of spinal motor control adaptations in changing gravity conditions. Both hypergravity and microgravity lead to changes in spinal motor control. The decrease in spinal stiffness during hypergravity is interpreted as a shift of the axial load from the spine to the pelvis and thoracic cage. In microgravity, activity of the multifidi and of the psoas muscles seems to ensure the integrity of the spine. Swiss (BASEC-NR: 2018-00051)/French "EST-III" (Nr-ID-RCB: 2018-A011294-51/Nr-CPP: 18.06.09).

17.
J Biomech ; 108: 109883, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32635997

RESUMO

Non-specific chronic low back pain (NSCLBP) is a major health problem, affecting about one fifth of the population worldwide. To avoid further pain or injury, patients with NSCLBP seem to adopt a stiffer movement pattern during everyday living activities. However, it remains unknown how NSCLBP affects the lumbar lordosis angle (LLA) during repetitive activities such as walking or running. This pilot study therefore aimed at exploring possible NSCLBP-related alterations in LLAs during walking and running by focusing on discrete parameters as well as continuous data. Thirteen patients with NSCLBP and 20 healthy pain-free controls were enrolled and underwent a full-body movement analysis involving various everyday living activities such as standing, walking and running. LLAs were derived from markers placed on the spinous processes of the vertebrae L1-L5 and S1. Possible group differences in discrete (average and range of motion (ROM)) and continuous LLAs were analyzed descriptively using mean differences with confidence intervals ranging from 95% to 75%. Patients with NSCLBP indicated reduced average LLAs during standing, walking and running and a tendency for lower LLA-ROM during walking. Analyses of continuous data indicated the largest group differences occurring around 25% and 70% of the walking and 25% and 75% of the running cycle. Furthermore, patients indicated a reversed movement pattern during running, with increasing instead of a decreasing LLAs after foot strike. This study provides preliminary evidence that NSCLBP might affect LLAs during walking and running. These results can be used as a basis for future large-scale investigations involving hypothesis testing.


Assuntos
Lordose , Dor Lombar , Humanos , Vértebras Lombares , Projetos Piloto , Amplitude de Movimento Articular , Caminhada
18.
Aerosp Med Hum Perform ; 89(6): 563-567, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29789091

RESUMO

INTRODUCTION: The purpose of this study was to analyze posterior-to-anterior spinal stiffness in Earth, hyper-, and microgravity conditions during both prone and upright postures. CASE REPORT: During parabolic flight, the spinal stiffness of the L3 vertebra of a healthy 37-yr-old man was measured in normal Earth gravity (1.0 g), hypergravity (1.8 g), and microgravity (0.0 g) conditions induced in the prone and upright positions. Differences in spinal stiffness were significant across all three gravity conditions in the prone and upright positions. Most effect sizes were large; however, in the upright posture, the effect size between Earth gravity and microgravity was medium. Significant differences in spinal stiffness between the prone and upright positions were found during Earth gravity and hypergravity conditions. No difference was found between the two postures during microgravity conditions. DISCUSSION: Based on repeated measurements of a single individual, our results showed detectable changes in posterior-to-anterior spinal stiffness. Spinal stiffness increased during microgravity and decreased during hypergravity conditions. In microgravity conditions, posture did not impact spinal stiffness. More data on spinal stiffness in variable gravitational conditions is needed to confirm these results.Swanenburg J, Meier ML, Langenfeld A, Schweinhardt P, Humphreys BK. Spinal stiffness in prone and upright postures during 0-1.8 g induced by parabolic flight. Aerosp Med Hum Perform. 2018; 89(6):563-567.


Assuntos
Gravitação , Hipergravidade/efeitos adversos , Postura/fisiologia , Voo Espacial , Coluna Vertebral/fisiologia , Ausência de Peso/efeitos adversos , Adulto , Humanos , Dor Lombar/etiologia , Masculino , Decúbito Ventral/fisiologia , Fatores de Risco
19.
Front Hum Neurosci ; 10: 335, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445771

RESUMO

The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to -35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to -35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity.

20.
Brain Behav ; 6(12): e00575, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28031998

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed at investigating the feasibility of functional near-infrared spectroscopy (fNIRS) to measure changes in cerebral hemodynamics and oxygenation evoked by painful and nonpainful mechanosensory stimulation on the lower back. The main objectives were to investigate whether cortical activity can be (1) detected using functional fNIRS, and (2) if it is possible to distinguish between painful and nonpainful pressure as well as a tactile brushing stimulus based on relative changes in oxy- and deoxyhemoglobin ([O2Hb] and [HHb]). METHODS: Twenty right-handed subjects (33.5 ± 10.7 years; range 20-61 years; 8 women) participated in the study. Painful and nonpainful pressure stimulation was exerted with a thumb grip perpendicularly to the spinous process of the lumbar spine. Tactile stimulation was realized by a one-finger brushing. The supplementary motor area (SMA) and primary somatosensory cortex (S1) were measured bilaterally using a multichannel continuous-wave fNIRS imaging system. RESULTS: Characteristic relative changes in [O2Hb] in the SMA and S1 after both pressure stimulations (corrected for multiple comparison) were observed. [HHb] showed only much weaker changes (uncorrected). The brushing stimulus did not reveal any significant changes in [O2Hb] or [HHb]. CONCLUSION: The results indicate that fNIRS is sensitive enough to detect varying hemodynamic responses to different types of mechanosensory stimulation. The acquired data will serve as a foundation for further investigations in patients with chronic lower back pain. The future aim is to disentangle possible maladaptive neuroplastic changes in sensorimotor areas during painful and nonpainful lower back stimulations based on fNIRS neuroimaging.


Assuntos
Dor Lombar/fisiopatologia , Córtex Motor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Feminino , Frequência Cardíaca/fisiologia , Hemodinâmica , Hemoglobinas/metabolismo , Humanos , Dor Lombar/sangue , Masculino , Mecanotransdução Celular/fisiologia , Pessoa de Meia-Idade , Oxigênio/sangue , Oxiemoglobinas/metabolismo , Estimulação Física , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa