Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO J ; 41(9): e107505, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35099835

RESUMO

Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell-cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis- and trans-synaptic protein complexes. Here, we present a 2.7 Å cryo-EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C-rich, YD-shell, and ABD domains. A 1.5 Å crystal structure of the C-rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS-based rigid-body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium-dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis-dimer is compatible with homomeric trans-interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis- and trans-synaptic interactions to construct functional neuronal circuits.


Assuntos
Cálcio , Tenascina , Animais , Cálcio/metabolismo , Humanos , Neurônios/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Tenascina/química , Tenascina/metabolismo , Difração de Raios X
2.
Biophys J ; 120(7): 1198-1209, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617832

RESUMO

The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA , Sistemas CRISPR-Cas , DNA/genética , Endonucleases , RNA/genética
3.
Nat Rev Neurosci ; 13(12): 819-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23165259

RESUMO

The basic helix-loop-helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Despite these similarities, it was apparent from early on after their discovery that OLIG1 and OLIG2 have non-overlapping developmental functions in patterning, neuron subtype specification and the formation of oligodendrocytes. Here, we summarize more recent insights into the separate roles of these transcription factors in the postnatal brain during repair processes and in neurological disease states, including multiple sclerosis and malignant glioma. We discuss how the unique functions of OLIG1 and OLIG2 may reflect their distinct genetic targets, co-regulator proteins and/or post-translational modifications.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Animais , Encéfalo/citologia , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Neurônios/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/metabolismo , Processamento de Proteína Pós-Traducional
4.
J Neurosci ; 34(25): 8507-18, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24948806

RESUMO

The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active "open" chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/química , Células-Tronco Neurais/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Núcleo Celular/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Fosforilação/genética , Gravidez
5.
Nat Commun ; 15(1): 3648, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684645

RESUMO

Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions. Here we present cryo-EM structures of the compact dimeric ectodomain of two teneurin-3 isoforms that harbour the splice insert in the EGF-repeats. This dimer is stabilised by an EGF8-ABD contact between subunits. Cryo-EM reconstructions of all four splice variants, together with SAXS and negative stain EM, reveal compacted dimers for each, with variant-specific dimeric arrangements. This results in specific trans-cellular interactions, as tested in cell clustering and stripe assays. The compact conformations provide a structural basis for teneurin homo- and heterophilic interactions. Altogether, our findings demonstrate how alternative splicing results in rearrangements of the dimeric subunits, influencing neuronal recognition and likely circuit wiring.


Assuntos
Processamento Alternativo , Microscopia Crioeletrônica , Neurônios , Neurônios/metabolismo , Animais , Humanos , Multimerização Proteica , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/química , Modelos Moleculares
6.
Curr Res Struct Biol ; 4: 332-337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248264

RESUMO

Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithms, small proteins remain elusive for reconstruction due to low signal-to-noise and lack of distinctive structural features. Multiple efforts have therefore been directed at the development of size-increase techniques for small proteins. Here we review the latest methods for increasing effective molecular weight of proteins <100 â€‹kDa through target protein binding or target protein fusion - specifically by using nanobody-based assemblies, fusion tags, and symmetric scaffolds. Finally, we summarize these state-of-the-art techniques into a decision-tree to facilitate the design of tailored future approaches, and thus for further exploration of ever-smaller proteins that make up the largest part of the human genome.

7.
Nat Commun ; 13(1): 6607, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329006

RESUMO

Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.


Assuntos
Moléculas de Adesão Celular , Contactina 1 , Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Contactinas , Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
8.
J Neurooncol ; 96(3): 337-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19618115

RESUMO

Glioblastoma multiforme (GBM) is a serious form of brain cancer for which there is currently no effective treatment. Alternative strategies such as adeno-associated virus (AAV) vector mediated-genetic modification of brain tumor cells with genes encoding anti-tumor proteins have shown promising results in preclinical models of GBM, although the transduction efficiency of these tumors is often low. As higher transduction efficiency of tumor cells should lead to enhanced therapeutic efficacy, a means to rapidly engineer AAV vectors with improved transduction efficiency for individual tumors is an attractive strategy. Here we tested the possibility of identifying high-efficiency AAV vectors for human U87 glioma cells by selection in culture of a newly constructed chimeric AAV capsid library generated by DNA shuffling of six different AAV cap genes (AAV1, AAV2, AAV5, AAVrh.8, AAV9, AAVrh.10). After seven rounds of selection, we obtained a chimeric AAV capsid that transduces U87 cells at high efficiency (97% at a dose of 10(4) genome copies/cell), and at low doses it was 1.45-1.6-fold better than AAV2, which proved to be the most efficient parental capsid. Interestingly, the new AAV capsid displayed robust gene delivery properties to all glioma cells tested (including primary glioma cells) with relative fluorescence indices ranging from 1- to 14-fold higher than AAV2. The selected vector should be useful for in vitro glioma research when efficient transduction of several cell lines is required, and provides proof-of-concept that an AAV library can be used to generate AAV vectors with enhanced transduction efficiency of glioma cells.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Glioma/genética , Transdução Genética/métodos , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Embaralhamento de DNA/métodos , Citometria de Fluxo/métodos , Biblioteca Gênica , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Heparina/farmacologia , Humanos , Neuroblastoma/patologia , Fatores de Tempo
9.
Epilepsia ; 50(7): 1717-28, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389151

RESUMO

PURPOSE: Vesicular glutamate transporters (VGLUTs) are responsible for loading synaptic vesicles with glutamate, determining the phenotype of glutamatergic neurons, and have been implicated in the regulation of quantal size and presynaptic plasticity. We analyzed VGLUT subtype expression in normal human hippocampus and tested the hypothesis that alterations in VGLUT expression may contribute to long-term changes in glutamatergic transmission reported in patients with temporal lobe epilepsy (TLE). METHODS: VGLUT immunohistochemistry, immunofluorescence, in situ hybridization, Western blotting, and quantitative polymerase chain reaction (qPCR) were performed on biopsies from TLE patients without (non-HS) and with hippocampal sclerosis (HS) and compared to autopsy controls and rat hippocampus. VGLUT1 expression was compared with synaptophysin, neuropeptide Y (NPY), and Timm's staining. RESULTS: VGLUT1 was the predominant VGLUT in human hippocampus and appeared to be localized to presynaptic glutamatergic terminals. In non-HS hippocampi, VGLUT1 protein levels were increased compared to control and HS hippocampi in all subfields. In HS hippocampi VGLUT1 expression was decreased in subfields with severe neuronal loss, but strongly up-regulated in the dentate gyrus, characterized by mossy fiber sprouting. DISCUSSION: VGLUT1 is used as marker for glutamatergic synapses in the human hippocampus. In HS hippocampi VGLUT1 up-regulation in the dentate gyrus probably marks new glutamatergic synapses formed by mossy fiber sprouting. Our data indicate that non-HS patients have an increased capacity to store glutamate in vesicles, most likely due to an increase in translational processes or upregulation of VGLUT1 in synapses from afferent neurons outside the hippocampus. This up-regulation may increase glutamatergic transmission, and thus contribute to increased extracellular glutamate levels and hyperexcitability.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imuno-Histoquímica , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeo Y/metabolismo , Ratos , Esclerose/patologia , Sinapses/metabolismo , Sinapses/patologia , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Sinaptofisina/metabolismo , Distribuição Tecidual , Proteína Vesicular 1 de Transporte de Glutamato/fisiologia
10.
Mol Ther ; 16(10): 1695-702, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18714312

RESUMO

Glioblastoma multiforme (GBM) is a devastating form of brain cancer for which there is no effective treatment. Here, we report a novel approach to brain tumor therapy through genetic modification of normal brain cells to block tumor growth and effect tumor regression. Previous studies have focused on the use of vector-based gene therapy for GBM by direct intratumoral injection with expression of therapeutic proteins by tumor cells themselves. However, as antitumor proteins are generally lethal to tumor cells, the therapeutic reservoir is rapidly depleted, allowing escape of residual tumor cells. Moreover, it has been difficult to achieve consistent transduction of these highly heterogeneous tumors. In our studies, we found that transduction of normal cells in the brain with an adeno-associated virus (AAV) vector encoding interferon-beta (IFN-beta) was sufficient to completely prevent tumor growth in orthotopic xenograft models of GBM, even in the contralateral hemisphere. In addition, complete eradication of established tumors was achieved through expression of IFN-beta by neurons using a neuronal-restricted promoter. To our knowledge this is the first direct demonstration of the efficacy of targeting gene delivery exclusively to normal brain cells for brain tumor therapy.


Assuntos
Neoplasias Encefálicas/patologia , Divisão Celular , Dependovirus/genética , Glioblastoma/patologia , Animais , Vetores Genéticos , Humanos , Camundongos , Camundongos Nus , Transdução Genética
11.
Front Neurosci ; 13: 643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297045

RESUMO

Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.

12.
Nat Commun ; 9(1): 1079, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540701

RESUMO

Teneurins are ancient cell-cell adhesion receptors that are vital for brain development and synapse organisation. They originated in early metazoan evolution through a horizontal gene transfer event when a bacterial YD-repeat toxin fused to a eukaryotic receptor. We present X-ray crystallography and cryo-EM structures of two Teneurins, revealing a ~200 kDa extracellular super-fold in which eight sub-domains form an intricate structure centred on a spiralling YD-repeat shell. An alternatively spliced loop, which is implicated in homophilic Teneurin interaction and specificity, is exposed and thus poised for interaction. The N-terminal side of the shell is 'plugged' via a fibronectin-plug domain combination, which defines a new class of YD proteins. Unexpectedly, we find that these proteins are widespread amongst modern bacteria, suggesting early metazoan receptor evolution from a distinct class of proteins, which today includes both bacterial proteins and eukaryotic Teneurins.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Comunicação Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Estrutura Secundária de Proteína , Tenascina/química , Tenascina/genética , Tenascina/metabolismo
13.
Nat Commun ; 8(1): 1708, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167428

RESUMO

Low pH-induced ligand release and receptor recycling are important steps for endocytosis. The transmembrane protein sortilin, a ß-propeller containing endocytosis receptor, internalizes a diverse set of ligands with roles in cell differentiation and homeostasis. The molecular mechanisms of pH-mediated ligand release and sortilin recycling are unresolved. Here we present crystal structures that show the sortilin luminal segment (s-sortilin) undergoes a conformational change and dimerizes at low pH. The conformational change, within all three sortilin luminal domains, provides an altered surface and the dimers sterically shield a large interface while bringing the two s-sortilin C-termini into close proximity. Biophysical and cell-based assays show that members of two different ligand families, (pro)neurotrophins and neurotensin, preferentially bind the sortilin monomer. This indicates that sortilin dimerization and conformational change discharges ligands and triggers recycling. More generally, this work may reveal a double mechanism for low pH-induced ligand release by endocytosis receptors.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endocitose/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
14.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27844056

RESUMO

An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (Ih). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). In the mouse olfactory bulb, we show that Ih is present in granule cells (GCs), the most prominent inhibitory neuron in the olfactory bulb, and that Ih underlies subthreshold resonance in GCs. In accord with the properties of Ih, the currents exhibited sensitivity to changes in extracellular K+ concentration and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidin chloride), a blocker of Ih. ZD7288 also caused GCs to hyperpolarize and increase their input resistance, suggesting that Ih is active at rest in GCs. The inclusion of cAMP in the intracellular solution shifted the activation of Ih to less negative potentials in the MOB, but not in the AOB, suggesting that channels with different subunit composition mediate Ih in these regions. Furthermore, we show that mature GCs exhibit Ih-dependent subthreshold resonance in the theta frequency range (4-12 Hz). Another inhibitory subtype in the MOB, the periglomerular cells, exhibited Ih-dependent subthreshold resonance in the delta range (1-4 Hz), while principal neurons, the mitral cells, do not exhibit Ih-dependent subthreshold resonance. Importantly, Ih size, as well as the strength and frequency of resonance in GCs, exhibited a postnatal developmental progression, suggesting that this development of Ih in GCs may differentially contribute to their integration of sensory input and contribution to oscillatory circuit dynamics.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Animais , Cátions Monovalentes/metabolismo , AMP Cíclico/metabolismo , Eletroporação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Técnicas de Patch-Clamp , Potássio/metabolismo , Pirimidinas/farmacologia , Ritmo Teta , Técnicas de Cultura de Tecidos
15.
ACS Chem Biol ; 11(11): 3146-3153, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27643505

RESUMO

Basic helix-loop-helix (bHLH) transcription factors play critical roles in organism development and disease by regulating cell proliferation and differentiation. Transcriptional activity, whether by bHLH homo- or heterodimerization, is dependent on protein-protein and protein-DNA interactions mediated by α-helices. Thus, α-helical decoys have been proposed as potential targeted therapies for pathologic bHLH transcription. Here, we developed a library of stabilized α-helices of OLIG2 (SAH-OLIG2) to test the capacity of hydrocarbon-stapled peptides to disrupt OLIG2 homodimerization, which drives the development and chemoresistance of glioblastoma multiforme, one of the deadliest forms of human brain cancer. Although stapling successfully reinforced the α-helical structure of bHLH constructs of varying length, sequence-specific dissociation of OLIG2 dimers from DNA was not achieved. Re-evaluation of the binding determinants for OLIG2 self-association and stability revealed an unanticipated role of the C-terminal domain. These data highlight potential pitfalls in peptide-based targeting of bHLH transcription factors given the liabilities of their positively charged amino acid sequences and multifactorial binding determinants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hidrocarbonetos/química , Peptídeos/química , Animais , Células COS , Dimerização , Humanos , Mimetismo Molecular
16.
Neuron ; 81(3): 574-87, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24507192

RESUMO

Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum, resulting in an ∼30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Interneurônios/fisiologia , Fatores de Transcrição/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Contagem de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Sinapses/fisiologia , Fatores de Transcrição/genética
17.
Brain Pathol ; 21(4): 441-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21159008

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem- and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [(18) F] 3'-deoxy-3'-[(18) F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98-Fluc-mCherry). These cultured E98-Fluc-mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98-Fluc-mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.


Assuntos
Neoplasias do Tronco Encefálico/patologia , Modelos Animais de Doenças , Ponte/patologia , Animais , Neoplasias do Tronco Encefálico/radioterapia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias/métodos , Ponte/efeitos da radiação , Radioterapia
18.
Neuron ; 69(5): 906-17, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21382551

RESUMO

The bHLH transcription factors that regulate early development of the central nervous system can generally be classified as either antineural or proneural. Initial expression of antineural factors prevents cell cycle exit and thereby expands the pool of neural progenitors. Subsequent (and typically transient) expression of proneural factors promotes cell cycle exit, subtype specification, and differentiation. Against this backdrop, the bHLH transcription factor Olig2 in the oligodendrocyte lineage is unorthodox, showing antineural functions in multipotent CNS progenitor cells but also sustained expression and proneural functions in the formation of oligodendrocytes. We show here that the proliferative function of Olig2 is controlled by developmentally regulated phosphorylation of a conserved triple serine motif within the amino-terminal domain. In the phosphorylated state, Olig2 maintains antineural (i.e., promitotic) functions that are reflected in human glioma cells and in a genetically defined murine model of primary glioma.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Fosforilação/fisiologia , Análise de Variância , Animais , Western Blotting , Linhagem da Célula/fisiologia , Imunoprecipitação da Cromatina , Humanos , Camundongos , Fator de Transcrição 2 de Oligodendrócitos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Nat Cell Biol ; 10(12): 1470-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19011622

RESUMO

Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Neoplasias/metabolismo , Transporte de RNA , RNA/metabolismo , Indutores da Angiogênese/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Exossomos/ultraestrutura , Glioblastoma/diagnóstico , Glioblastoma/ultraestrutura , Humanos , Neovascularização Patológica/metabolismo , RNA/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa