Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Cell ; 83(12): 2077-2090.e12, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209685

RESUMO

Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.


Assuntos
Autofagossomos , Autofagia , Humanos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Autofagossomos/metabolismo , Proteínas de Membrana/metabolismo , Lipídeos
2.
EMBO J ; 41(16): e110476, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35912435

RESUMO

Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.


Assuntos
Proteostase , Prótons , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo
3.
Biol Chem ; 404(2-3): 169-178, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35977096

RESUMO

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and imported in a posttranslational manner. Intricate protein import machineries have evolved that catalyze the different stages of translocation. In humans, PEX5L was found to be an essential component of the peroxisomal translocon. PEX5L is the main receptor for substrate proteins carrying a peroxisomal targeting signal (PTS). Substrates are bound by soluble PEX5L in the cytosol after which the cargo-receptor complex is recruited to peroxisomal membranes. Here, PEX5L interacts with the docking protein PEX14 and becomes part of an integral membrane protein complex that facilitates substrate translocation into the peroxisomal lumen in a still unknown process. In this study, we show that PEX5L containing complexes purified from human peroxisomal membranes constitute water-filled pores when reconstituted into planar-lipid membranes. Channel characteristics were highly dynamic in terms of conductance states, selectivity and voltage- and substrate-sensitivity. Our results show that a PEX5L associated pore exists in human peroxisomes, which can be activated by receptor-cargo complexes.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proteínas de Transporte/metabolismo , Transporte Proteico , Peroxissomos/metabolismo
4.
Cell ; 132(6): 1011-24, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18358813

RESUMO

Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(24): 13468-13479, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467162

RESUMO

The functions of nervous and neuroendocrine systems rely on fast and tightly regulated release of neurotransmitters stored in secretory vesicles through SNARE-mediated exocytosis. Few proteins, including tomosyn (STXBP5) and amisyn (STXBP6), were proposed to negatively regulate exocytosis. Little is known about amisyn, a 24-kDa brain-enriched protein with a SNARE motif. We report here that full-length amisyn forms a stable SNARE complex with syntaxin-1 and SNAP-25 through its C-terminal SNARE motif and competes with synaptobrevin-2/VAMP2 for the SNARE-complex assembly. Furthermore, amisyn contains an N-terminal pleckstrin homology domain that mediates its transient association with the plasma membrane of neurosecretory cells by binding to phospholipid PI(4,5)P2 However, unlike synaptrobrevin-2, the SNARE motif of amisyn is not sufficient to account for the role of amisyn in exocytosis: Both the pleckstrin homology domain and the SNARE motif are needed for its inhibitory function. Mechanistically, amisyn interferes with the priming of secretory vesicles and the sizes of releasable vesicle pools, but not vesicle fusion properties. Our biochemical and functional analyses of this vertebrate-specific protein unveil key aspects of negative regulation of exocytosis.


Assuntos
Exocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/metabolismo , Humanos , Lipossomos/metabolismo , Fusão de Membrana , Células PC12 , Domínios de Homologia à Plecstrina , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Vertebrados , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
6.
Cell Mol Life Sci ; 78(5): 2355-2370, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32997199

RESUMO

Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endocitose , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Sítios de Ligação/genética , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico
7.
Proc Natl Acad Sci U S A ; 116(21): 10568-10575, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068459

RESUMO

Jasmonates are vital plant hormones that not only act in the stress response to biotic and abiotic influences, such as wounding, pathogen attack, and cold acclimation, but also drive developmental processes in cooperation with other plant hormones. The biogenesis of jasmonates starts in the chloroplast, where several enzymatic steps produce the jasmonate precursor 12-oxophytodienoic acid (OPDA) from α-linolenic acid. OPDA in turn is exported into the cytosol for further conversion into active jasmonates, which subsequently induces the expression of multiple genes in the nucleus. Despite its obvious importance, the export of OPDA across the chloroplast membranes has remained elusive. In this study, we characterized a protein residing in the chloroplast outer membrane, JASSY, which has proven indispensable for the export of OPDA from the chloroplast. We provide evidence that JASSY has channel-like properties and propose that it thereby facilitates OPDA transport. Consequently, a lack of JASSY in Arabidopsis leads to a deficiency in accumulation of jasmonic acids, which results in impaired expression of jasmonate target genes on exposure to various stresses. This results in plants that are more susceptible to pathogen attack and also exhibit defects in cold acclimation.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Oxilipinas/metabolismo , Aclimatação , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal
8.
Eur Biophys J ; 50(2): 295-306, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527201

RESUMO

Cellular membranes can adopt a plethora of complex and beautiful shapes, most of which are believed to have evolved for a particular physiological reason. The closely entangled relationship between membrane morphology and cellular physiology is strikingly seen in membrane trafficking pathways. During clathrin-mediated endocytosis, for example, over the course of a minute, a patch of the more or less flat plasma membrane is remodeled into a highly curved clathrin-coated vesicle. Such vesicles are internalized by the cell to degrade or recycle plasma membrane receptors or to take up extracellular ligands. Other, steadier, membrane morphologies can be observed in organellar membranes like the endoplasmic reticulum or mitochondria. In the case of mitochondria, which are double membrane-bound, ubiquitous organelles of eukaryotic cells, especially the mitochondrial inner membrane displays an intricated ultrastructure. It is highly folded and consequently has a much larger surface than the mitochondrial outer membrane. It can adopt different shapes in response to cellular demands and changes of the inner membrane morphology often accompany severe diseases, including neurodegenerative- and metabolic diseases and cancer. In recent years, progress was made in the identification of molecules that are important for the aforementioned membrane remodeling events. In this review, we will sum up recent results and discuss the main players of membrane remodeling processes that lead to the mitochondrial inner membrane ultrastructure and in clathrin-mediated endocytosis. We will compare differences and similarities between the molecular mechanisms that peripheral and integral membrane proteins use to deform membranes.


Assuntos
Clatrina/metabolismo , Endocitose , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Humanos
9.
Soft Matter ; 17(2): 233-240, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32432576

RESUMO

Cellular membranes are anything but flat structures. They display a wide variety of complex and beautiful shapes, most of which have evolved for a particular physiological reason and are adapted to accommodate certain cellular demands. In membrane trafficking events, the dynamic remodelling of cellular membranes is apparent. In clathrin-mediated endocytosis for example, the plasma membrane undergoes heavy deformation to generate and internalize a highly curved clathrin-coated vesicle. This process has become a model system to study proteins with the ability to sense and induce membrane curvature and over the last two decades numerous membrane remodelling molecules and molecular mechanisms have been identified in this process. In this review, we discuss the interaction of epsin1 ENTH domain with membranes, which is one of the best-studied examples of a peripheral and transiently membrane bending protein important for clathrin-mediated endocytosis.


Assuntos
Clatrina , Endocitose , Membrana Celular , Proteínas de Membrana , Membranas
10.
J Biol Chem ; 291(38): 19953-61, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27466364

RESUMO

The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg(2+) concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (<0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus KA We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in KA, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Lipossomas Unilamelares/química , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína , Tensão Superficial
11.
Biochim Biophys Acta ; 1863(5): 821-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26497277

RESUMO

Peroxisomal protein import is essentially different to the translocation of proteins into other organelles. The molecular mechanisms by which completely folded or even oligomerized proteins cross the peroxisomal membrane remain to be disclosed. The identification of a water-filled pore that is mainly constituted by Pex5 and Pex14 led to the assumption that proteins are translocated through a large, probably transient, protein-conducting channel. Here, we will review the work that led to the identification of this translocation pore. In addition, we will discuss the main biophysical features of the pore and compare it with other protein­translocation channels.


Assuntos
Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Receptor 2 de Sinal de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
12.
J Struct Biol ; 196(1): 20-28, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456366

RESUMO

Biological membranes exhibit function-related shapes, leading to a plethora of complex and beautiful cell and cell organellar morphologies. Most if not all of these structures have evolved for a particular physiological reason. The shapes of these structures are formed by physical forces that operate on membranes. To create particular shaped cells and cell organelles, membranes must undergo deformations which are determined by the structure and elasticity of the membrane and this process is most probable driven by proteins, lipids and/or interplay of both Zimmerberg and Kozlov (2006). Therefore, an important question of current cell biology in conjunction with physics and mathematics is to elucidate the functional cause for these different membrane morphologies as well as how they are formed. One of the most peculiar membrane shapes is observed in mitochondria. These organelles are surrounded by two membranes and especially the convoluted inner membrane displays a complex ultra-structure. A molecular understanding of how this membrane is shaped is missing to a large extent. Unlike membrane remodeling in classical curvature-dependent processes like clathrin-mediated endocytosis, mitochondria are most likely shaped by integral membrane proteins. Following, we will review the current knowledge of inner mitochondrial membrane architecture and discuss recent findings and advances in understanding the factors that shape this membrane. We will address pending questions especially with regard to the experimentally challenging nature of investigating membrane bending by hydrophobic integral membrane proteins.


Assuntos
Proteínas de Membrana/fisiologia , Membranas Mitocondriais/química , Animais , Humanos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Forma das Organelas
13.
J Cell Sci ; 126(Pt 14): 2990-6, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23687374

RESUMO

Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a ∼2080 outerinner leaflet repartition during interphase to ∼5050 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Células Epiteliais/fisiologia , Metáfase , Salmonella typhimurium/patogenicidade , Proteínas de Bactérias/metabolismo , Processos de Crescimento Celular , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/microbiologia , Citometria de Fluxo , Gastroenterite/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Virulência
14.
J Biol Chem ; 288(9): 6651-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23297414

RESUMO

Dynamin mediates various membrane fission events, including the scission of clathrin-coated vesicles. Here, we provide direct evidence for cooperative membrane recruitment of dynamin with the BIN/amphiphysin/Rvs (BAR) proteins, endophilin and amphiphysin. Surprisingly, endophilin and amphiphysin recruitment to membranes was also dependent on binding to dynamin due to auto-inhibition of BAR-membrane interactions. Consistent with reciprocal recruitment in vitro, dynamin recruitment to the plasma membrane in cells was strongly reduced by concomitant depletion of endophilin and amphiphysin, and conversely, depletion of dynamin dramatically reduced the recruitment of endophilin. In addition, amphiphysin depletion was observed to severely inhibit clathrin-mediated endocytosis. Furthermore, GTP-dependent membrane scission by dynamin was dramatically elevated by BAR domain proteins. Thus, BAR domain proteins and dynamin act in synergy in membrane recruitment and GTP-dependent vesicle scission.


Assuntos
Membrana Celular/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/metabolismo , Linhagem Celular , Membrana Celular/genética , Dinaminas/genética , Guanosina Trifosfato/genética , Humanos , Proteínas do Tecido Nervoso/genética , Vesículas Secretórias/genética
15.
Nat Cell Biol ; 9(10): 1152-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17828250

RESUMO

The mitochondrial inner membrane is the central energy-converting membrane of eukaryotic cells. The electrochemical proton gradient generated by the respiratory chain drives the ATP synthase. To maintain this proton-motive force, the inner membrane forms a tight barrier and strictly controls the translocation of ions. However, the major preprotein transport machinery of the inner membrane, termed the presequence translocase, translocates polypeptide chains into or across the membrane. Different views exist of the molecular mechanism of the translocase, in particular of the coupling with the import motor of the matrix. We have reconstituted preprotein transport into the mitochondrial inner membrane by incorporating the purified presequence translocase into cardiolipin-containing liposomes. We show that the motor-free form of the presequence translocase integrates preproteins into the membrane. The reconstituted presequence translocase responds to targeting peptides and mediates voltage-driven preprotein translocation, lateral release and insertion into the lipid phase. Thus, the minimal system for preprotein integration into the mitochondrial inner membrane is the presequence translocase, a cardiolipin-rich membrane and a membrane potential.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c1/metabolismo , Imunoprecipitação , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Precursores de Proteínas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Soft Matter ; 10(33): 6228-36, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25012509

RESUMO

The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO(2) substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 µm and a pore depth of 10 µm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP(2) specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer.


Assuntos
Membranas Artificiais , Dióxido de Silício/química , Silício/química , Proteínas Adaptadoras de Transporte Vesicular/química , Animais , Íons/química , Bicamadas Lipídicas/química , Teste de Materiais , Microscopia Confocal , Osmose , Fosfatidilcolinas/química , Pressão , Estrutura Terciária de Proteína , Proteínas/química , Ratos , Solventes/química , Temperatura , Compostos de Estanho/química
17.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253420

RESUMO

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Membranas Mitocondriais , Citoesqueleto , Membranas Associadas à Mitocôndria , Proteínas de Drosophila/genética
18.
J Biol Chem ; 287(33): 27813-22, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22740696

RESUMO

H(+) symporter ProP serves as a paradigm for the study of osmosensing. ProP attains the same activity at the same osmolality when the medium outside cells or proteoliposomes is supplemented with diverse, membrane-impermeant solutes. The osmosensory mechanism of ProP has been probed by varying the solvent within membrane vesicles and proteoliposomes. ProP activation was not ion specific, did not require K(+), and could be elicited by large, uncharged solutes polyethylene glycols (PEGS). We hypothesized that ProP is an ionic strength sensor and lumenal macromolecules activate ProP by altering ion activities. The attainable range of lumenal ionic strength was expanded by lowering the phosphate concentration within proteoliposomes. ProP activity at high osmolality, but not the osmolality, yielding half-maximal activity (Π(1/2)/RT), decreased with the lumenal phosphate concentration. This was attributed to acidification of the proteoliposome lumen due to H(+)-proline symport. The ionic strength yielding half-maximal ProP activity was more anion-dependent than Π(1/2)/RT for proteoliposomes loaded with citrate, sulfate, phosphate, chloride, or iodide. The anion effects followed the Hofmeister series. Lumenal bovine serum albumin (BSA) lowered the lumenal ionic strength at which ProP became active. Osmolality measurements documented the non-idealities of solutions including potassium phosphate and other solutes. The impacts of PEGS and BSA on ion activities did not account for their impacts on ProP activity. The effects of the tested solutes on ProP appear to be non-coulombic in nature. They may arise from effects of preferential interactions and macromolecular crowding on the membrane or on ProP.


Assuntos
Proteínas de Escherichia coli/química , Lipossomos/química , Polietilenoglicóis/química , Simportadores/química , Animais , Bovinos , Transporte de Íons/fisiologia , Concentração Osmolar , Soroalbumina Bovina/química
19.
J Biol Chem ; 287(40): 33314-26, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22829595

RESUMO

The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Bicamadas Lipídicas/química , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Biofísica/métodos , Cátions , Dicroísmo Circular , Eletrofisiologia/métodos , Lipossomos/química , Potenciais da Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/química , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo
20.
PLoS Pathog ; 6(4): e1000878, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20442789

RESUMO

The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% beta-strands, similar to pore-forming beta-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.


Assuntos
Proteínas de Bactérias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Proteínas de Bactérias/química , Eletrofisiologia , Células HeLa , Helicobacter pylori/metabolismo , Humanos , Microscopia de Fluorescência , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa