Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Mol Cell Cardiol ; 155: 125-137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130150

RESUMO

AIMS: One unaddressed aspect of healing after myocardial infarction (MI) is how non-myocyte cells that survived the ischemic injury, keep withstanding additional cellular damage by stress forms typically arising during the post-infarction inflammation. Here we aimed to determine if cell survival is conferred by expression of a mitochondrial protein novel to the cardiac proteome, known as steroidogenic acute regulatory protein, (StAR/STARD1). Further studies aimed to unravel the regulation and role of the non-steroidogenic cardiac StAR after MI. METHODS AND RESULTS: Following permanent ligation of the left anterior descending coronary artery in mouse heart, timeline western blot analyses showed that StAR expression corresponds to the inflammatory response to MI. Following the identification of StAR in mitochondria of cardiac fibroblasts in culture, confocal microscopy immunohistochemistry (IHC) identified StAR expression in left ventricular (LV) activated interstitial fibroblasts, adventitial fibroblasts and endothelial cells. Further work with the primary fibroblasts model revealed that interleukin-1α (IL-1α) signaling via NF-κB and p38 MAPK pathways efficiently upregulates the expression of the Star gene products. At the functional level, IL-1α primed fibroblasts were protected against apoptosis when exposed to cisplatin mimicry of in vivo apoptotic stress; yet, the protective impact of IL-1α was lost upon siRNA mediated StAR downregulation. At the physiological level, StAR expression was nullified during post-MI inflammation in a mouse model with global IL-1α deficiency, concomitantly resulting in a 4-fold elevation of apoptotic fibroblasts. Serial echocardiography and IHC studies of mice examined 24 days after MI revealed aggravation of LV dysfunction, LV dilatation, anterior wall thinning and adverse tissue remodeling when compared with loxP control hearts. CONCLUSIONS: This study calls attention to overlooked aspects of cellular responses evolved under the stress conditions associated with the default inflammatory response to MI. Our observations suggest that LV IL-1α is cardioprotective, and at least one mechanism of this action is mediated by induction of StAR expression in border zone fibroblasts, which renders them apoptosis resistant. This acquired survival feature also has long-term ramifications on the heart recovery by diminishing adverse remodeling and improving the heart function after MI.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Interleucina-1alfa/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Fosfoproteínas/genética , Remodelação Ventricular/genética , Animais , Apoptose/genética , Biomarcadores , Células Cultivadas , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunofluorescência , Interleucina-1alfa/genética , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Fosfoproteínas/metabolismo , Transdução de Sinais
2.
PLoS Pathog ; 15(6): e1007851, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242273

RESUMO

Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts. This activity, which subverts numerous signaling and membrane trafficking pathways in the infected cells, is thought to contribute to pathogen virulence. The molecular and cellular mechanisms underlying these events are not well understood. We investigated the mode by which EPEC effectors hijack endosomes to modulate endocytosis, recycling and transcytosis in epithelial host cells. To this end, we developed a flow cytometry-based assay and imaging techniques to track endosomal dynamics and membrane cargo trafficking in the infected cells. We show that type-III secreted components prompt the recruitment of clathrin (clathrin and AP2), early (Rab5a and EEA1) and recycling (Rab4a, Rab11a, Rab11b, FIP2, Myo5b) endocytic machineries to peripheral plasma membrane infection sites. Protein cargoes, e.g. transferrin receptors, ß1 integrins and aquaporins, which exploit the endocytic pathways mediated by these machineries, were also found to be recruited to these sites. Moreover, the endosomes and cargo recruitment to infection sites correlated with an increase in cargo endocytic turnover (i.e. endocytosis and recycling) and transcytosis to the infected plasma membrane. The hijacking of endosomes and associated endocytic activities depended on the translocated EspF and Map effectors in non-polarized epithelial cells, and mostly on EspF in polarized epithelial cells. These data suggest a model whereby EPEC effectors hijack endosomal recycling mechanisms to mislocalize and concentrate host plasma membrane proteins in endosomes and in the apically infected plasma membrane. We hypothesize that these activities contribute to bacterial colonization and virulence.


Assuntos
Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/microbiologia , Membrana Celular/patologia , Endossomos/microbiologia , Endossomos/patologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/patologia , Células HeLa , Humanos
3.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037792

RESUMO

Enteropathogenic Escherichia coli (EPEC) belongs to a group of enteric human pathogens known as attaching-and-effacing (A/E) pathogens, which utilize a type III secretion system (T3SS) to translocate a battery of effector proteins from their own cytoplasm into host intestinal epithelial cells. Here we identified EspH to be an effector that prompts the recruitment of the tetraspanin CD81 to infection sites. EspH was also shown to be an effector that suppresses the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) signaling pathway at longer infection times. The inhibitory effect was abrogated upon deletion of the last 38 amino acids located at the C terminus of the protein. The efficacy of EspH-dependent Erk suppression was higher in CD81-deficient cells, suggesting that CD81 may act as a positive regulator of Erk, counteracting Erk suppression by EspH. EspH was found within CD81 microdomains soon after infection but was largely excluded from these domains at a later time. Based on our results, we propose a mechanism whereby CD81 is initially recruited to infection sites in response to EspH translocation. At a later stage, EspH moves out of the CD81 clusters to facilitate effective Erk inhibition. Moreover, EspH selectively inhibits the tumor necrosis factor alpha (TNF-α)-induced Erk signaling pathway. Since Erk and TNF-α have been implicated in innate immunity and cell survival, our studies suggest a novel mechanism by which EPEC suppresses these processes to promote its own colonization and survival in the infected gut.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Tetraspanina 28/metabolismo , Adolescente , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Intestinos/patologia , Masculino , Domínios Proteicos , Transdução de Sinais , Tetraspanina 28/química , Tetraspanina 28/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Opt Express ; 25(11): 12131-12143, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786571

RESUMO

Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.

5.
Nucleic Acids Res ; 43(4): 2074-90, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662603

RESUMO

The dynamic architecture of chromatin is vital for proper cellular function, and is maintained by the concerted action of numerous nuclear proteins, including that of the linker histone H1 variants, the most abundant family of nucleosome-binding proteins. Here we show that the nuclear protein HP1BP3 is widely expressed in most vertebrate tissues and is evolutionarily and structurally related to the H1 family. HP1BP3 contains three globular domains and a highly positively charged C-terminal domain, resembling similar domains in H1. Fluorescence recovery after photobleaching (FRAP) studies indicate that like H1, binding of HP1BP3 to chromatin depends on both its C and N terminal regions and is affected by the cell cycle and post translational modifications. HP1BP3 contains functional motifs not found in H1 histones, including an acidic stretch and a consensus HP1-binding motif. Transcriptional profiling of HeLa cells lacking HP1BP3 showed altered expression of 383 genes, suggesting a role for HP1BP3 in modulation of gene expression. Significantly, Hp1bp3(-/-) mice present a dramatic phenotype with 60% of pups dying within 24 h of birth and the surviving animals exhibiting a lifelong 20% growth retardation. We suggest that HP1BP3 is a ubiquitous histone H1 like nuclear protein with distinct and non-redundant functions necessary for survival and growth.


Assuntos
Proteínas Nucleares/fisiologia , Animais , Células Cultivadas , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Expressão Gênica , Crescimento , Células HeLa , Heterocromatina/metabolismo , Histonas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Taxa de Sobrevida
6.
Gut Microbes ; 16(1): 2400575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39312647

RESUMO

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Assuntos
Membrana Celular , Escherichia coli Enteropatogênica , Proteínas rab de Ligação ao GTP , Humanos , Membrana Celular/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exocitose , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de Sinais
7.
J Inorg Biochem ; 243: 112197, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963201

RESUMO

PhenolaTi is a promising Ti(IV) anticancer complex, with high stability and cytotoxicity, without notable toxic side-effects. Its cellular mechanism was proposed to relate to ER stress. Herein, we investigated the downstream effects of this mode of action in two cancer cell lines: ovarian carcinoma A2780 and cervical adenocarcinoma HeLa. First, although Ti(IV) is a non-redox metal, the formation of mitochondrial reactive oxygen species (ROS) was detected with live-cell imaging. Then, we inspected the effect of the mitochondrial ROS on cytotoxicity, using two methods: (a) addition of compounds that either elevate or reduce the mitochondrial glutathione concentration, thus affecting the oxidative state of the cells; and (b) scavenging mitochondrial ROS. Unlike the results observed for cisplatin, neither method influenced the cytotoxicity of phenolaTi, implying that ROS formation was a mere side effect of its activity. Additionally, live cell imaging displayed the hypoxia induced by phenolaTi, which can be associated with ROS formation. Overall, the results support the notion that ER-stress is the main cellular mechanism of phenolaTi, leading to hypoxia and mitochondrial ROS. The distinct mechanism of phenolaTi, which is different from that of cisplatin, combined with its stability and favorable anticancer properties, altogether make it a strong chemotherapeutic drug candidate.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Espécies Reativas de Oxigênio , Cisplatino/farmacologia , Linhagem Celular Tumoral , Titânio , Apoptose , Estresse do Retículo Endoplasmático , Hipóxia
8.
mBio ; 14(4): e0075223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37341483

RESUMO

EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.


Assuntos
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Adesão Celular , Morte Celular , Humanos , Linhagem Celular Tumoral
9.
J Cell Mol Med ; 16(11): 2736-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22697296

RESUMO

Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10-30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3-1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca(2+) ] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE.


Assuntos
Arteríolas/efeitos dos fármacos , Córtex Cerebral/irrigação sanguínea , Fluoxetina/farmacologia , Óxido Nítrico/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Vasodilatação/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Arteríolas/fisiologia , Atropina/farmacologia , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , Mecamilamina/farmacologia , Metisergida/farmacologia , Antagonistas Muscarínicos/provisão & distribuição , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Reperfusão , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Vasodilatação/fisiologia
10.
Plant J ; 68(3): 520-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21781194

RESUMO

The circadian system of plants regulates a wide range of rhythmic physiological and cellular output processes with a period of about 24 h. The rhythms are generated by an oscillator mechanism that, in Arabidopsis, consists of interlocking feedback loops of several components including CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and CCA1 HIKING EXPEDITION (CHE). Over recent years, researchers have gained a detailed picture of the clock mechanism at the resolution of the whole plant and several tissue types, but little information is known about the specificities of the clock mechanism at the level of individual cells. In this paper we have addressed the question of cell-type-specific differences in circadian systems. Using transgenic Arabidopsis plants with fluorescence-tagged CCA1 to measure rhythmicity in individual leaf cells in intact living plants, we showed that stomatal guard cells have a different period from surrounding epidermal and mesophyll leaf cells. By comparing transcript levels in guard cells with whole plants, we identified differences in the expression of some oscillator genes that may underlie cell-specific differences in clock properties. In addition, we demonstrated that the oscillators of individual cells in the leaf are robust, but become partially desynchronized in constant conditions. Taken together our results suggest that, at the level of individual cells, there are differences in the canonical oscillator mechanism that has been described for plants.


Assuntos
Arabidopsis/fisiologia , Ritmo Circadiano , Estômatos de Plantas/citologia , Relógios Circadianos , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , RNA de Plantas/análise
11.
J Virol ; 85(2): 946-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21068255

RESUMO

We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation. Treatment with these agents caused a reduction in viral RNA levels, the accumulation of infectious particles within the cells, and a reduction in the levels of these particles in the extracellular medium. Fluorescence analyses showed that the viral nonstructural (NS) proteins NS5A and NS3, but not the viral structural protein core, shifted their localization from speckle-like structures in untreated cells to the rims of lipid droplets (LDs) in treated cells. Using pulldown assays, we showed that ectopic overexpression of NS5A in Huh7 cells reduces the levels of GTP-Arf1. Downregulation of Arf1 expression by small interfering RNA (siRNA) decreased both the levels of HCV RNA and the production of infectious viral particles and altered the localization of NS5A to the peripheries of LDs. Together, our data provide novel insights into the role of Arf1 in the regulation of viral RNA replication and the production of infectious HCV.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Hepacivirus/fisiologia , Replicação Viral , Fator 1 de Ribosilação do ADP/antagonistas & inibidores , Brefeldina A/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Hepatócitos/virologia , Humanos , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas não Estruturais Virais/metabolismo
12.
Gut Microbes ; 14(1): 2130657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36219160

RESUMO

Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.


Assuntos
Proteínas de Escherichia coli , Microbioma Gastrointestinal , Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ativadoras de GTPase/genética , Guanina , Humanos , Sistemas de Secreção Tipo III
13.
Cell Microbiol ; 12(4): 489-505, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19912240

RESUMO

Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Proteínas de Escherichia coli/fisiologia , Fatores de Virulência/fisiologia , Linhagem Celular , Sobrevivência Celular , Humanos , Fibras de Estresse/metabolismo , Junções Íntimas
14.
Phys Chem Chem Phys ; 13(30): 13809-14, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21725546

RESUMO

In this paper, we characterize the dynamic nature of the full amyloid beta (1-40) (Aß (1-40)) aggregates. We labeled the peptide with either 5-carboxytetramethylrhodamine (TAMRA) or with fluorescein-isothiocyanate (FITC). The labeled peptides were mixed after separate fibrillization, and the dynamic changes in the structure of the fibrils were imaged using confocal microscopy. Fluorescence resonance energy transfer (FRET) measurements showed that the Aß (1-40) peptides detach from and reattach to the fibrils in a biologically relevant timescale (days). With time, the two peptides mix at the molecular level. This process is concentration dependent and occurs primarily in the external parts of the aggregates with a half time between 4 and 7 days. This study shows that the combination of confocal microscopy and FRET analysis is a facile method for studying dynamic processes in supra-molecular aggregates.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Isotiocianatos/química , Microscopia Confocal , Rodaminas/química
15.
Proc Natl Acad Sci U S A ; 105(1): 180-5, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162544

RESUMO

Lamins are nuclear intermediate filament proteins and the major building blocks of the nuclear lamina. Besides providing nuclear shape and mechanical stability, lamins are required for chromatin organization, transcription regulation, DNA replication, nuclear assembly, nuclear positioning, and apoptosis. Mutations in human lamins cause many different heritable diseases, affecting various tissues and causing early aging. Although many of these mutations result in nuclear deformation, their effects on lamin filament assembly are unknown. Caenorhabditis elegans has a single evolutionarily conserved lamin protein, which can form stable 10-nm-thick filaments in vitro. To gain insight into the molecular basis of lamin filament assembly and the effects of laminopathic mutations on this process, we investigated mutations in conserved residues of the rod and tail domains that are known to cause various laminopathies in human. We show that 8 of 14 mutant lamins present WT-like assembly into filaments or paracrystals, whereas 6 mutants show assembly defects. Correspondingly, expressing these mutants in transgenic animals shows abnormal distribution of Ce-lamin, abnormal nuclear shape or change in lamin mobility. These findings help in understanding the role of individual residues and domains in laminopathy pathology and, eventually, promote the development of therapeutic interventions.


Assuntos
Núcleo Celular/metabolismo , Laminas/química , Mutação , Animais , Caenorhabditis elegans , Sequência Conservada , Cristalização , DNA/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Mutação de Sentido Incorreto , Lâmina Nuclear/patologia , Peptídeos/química , Mutação Puntual , Ureia/química
16.
NPJ Regen Med ; 6(1): 58, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561447

RESUMO

Mitochondria are cellular organelles critical for numerous cellular processes and harboring their own circular mitochondrial DNA (mtDNA). Most mtDNA associated disorders (either deletions, mutations, or depletion) lead to multisystemic disease, often severe at a young age, with no disease-modifying therapies. Mitochondria have a capacity to enter eukaryotic cells and to be transported between cells. We describe a method of ex vivo augmentation of hematopoietic stem and progenitor cells (HSPCs) with normal exogenous mitochondria, termed mitochondrial augmentation therapy (MAT). Here, we show that MAT is feasible and dose dependent, and improves mitochondrial content and oxygen consumption of healthy and diseased HSPCs. Ex vivo mitochondrial augmentation of HSPCs from a patient with a mtDNA disorder leads to superior human engraftment in a non-conditioned NSGS mouse model. Using a syngeneic mouse model of accumulating mitochondrial dysfunction (Polg), we show durable engraftment in non-conditioned animals, with in vivo transfer of mitochondria to recipient hematopoietic cells. Taken together, this study supports MAT as a potential disease-modifying therapy for mtDNA disorders.

17.
Blood ; 112(13): 5219-27, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18796625

RESUMO

Various human disorders are associated with misdistribution of iron within or across cells. Friedreich ataxia (FRDA), a deficiency in the mitochondrial iron-chaperone frataxin, results in defective use of iron and its misdistribution between mitochondria and cytosol. We assessed the possibility of functionally correcting the cellular properties affected by frataxin deficiency with a siderophore capable of relocating iron and facilitating its metabolic use. Adding the chelator deferiprone at clinical concentrations to inducibly frataxin-deficient HEK-293 cells resulted in chelation of mitochondrial labile iron involved in oxidative stress and in reactivation of iron-depleted aconitase. These led to (1) restoration of impaired mitochondrial membrane and redox potentials, (2) increased adenosine triphosphate production and oxygen consumption, and (3) attenuation of mitochondrial DNA damage and reversal of hypersensitivity to staurosporine-induced apoptosis. Permeant chelators of higher affinity than deferiprone were not as efficient in restoring affected functions. Thus, although iron chelation might protect cells from iron toxicity, rendering the chelated iron bioavailable might underlie the capacity of deferiprone to restore cell functions affected by frataxin deficiency, as also observed in FRDA patients. The siderophore-like properties of deferiprone provide a rational basis for treating diseases of iron misdistribution, such as FRDA, anemia of chronic disease, and X-linked sideroblastic anemia with ataxia.


Assuntos
Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/fisiologia , Ferro/metabolismo , Piridonas/farmacologia , Trifosfato de Adenosina/biossíntese , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial , Deferiprona , Ataxia de Friedreich , Humanos , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Frataxina
18.
Mol Biol Cell ; 18(6): 2057-71, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17392516

RESUMO

Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.


Assuntos
Colesterol/metabolismo , Endocitose/fisiologia , Microdomínios da Membrana/metabolismo , Animais , Caveolina 1/metabolismo , Linhagem Celular , Polaridade Celular , Cães , Endossomos/metabolismo , Humanos , Imunoglobulina A/química , Imunoglobulina A/metabolismo , Ligantes , Receptores Fc/metabolismo , Receptores da Transferrina/metabolismo , Transdução de Sinais/fisiologia , beta-Ciclodextrinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
19.
mBio ; 11(5)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934081

RESUMO

The ability of diarrheagenic bacterial pathogens, such as enteropathogenic Escherichia coli (EPEC), to modulate the activity of mitogen-activated protein kinases (MAPKs) and cell survival has been suggested to benefit bacterial colonization and infection. However, our understanding of the mechanisms by which EPEC modulate these functions is incomplete. In this study, we show that the EPEC type III secreted effector Map stimulates the sheddase activity of the disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and the ERK and p38 MAPK signaling cascades. Remarkably, all these activities were dependent upon the ability of Map to target host mitochondria, mainly via its mitochondrial toxicity region (MTR). Map targeting of mitochondria disrupted the mitochondrial membrane potential, causing extrusion of mitochondrial Ca2+ into the host cell cytoplasm. We also found that Map targeting of mitochondria is essential for triggering host cell apoptosis. Based on these findings, we propose a model whereby Map imported into mitochondria causes mitochondrial dysfunction and Ca2+ efflux into the host cytoplasm. Since Ca2+ has been reported to promote ADAM10 activation, the acute elevation of Ca2+ in the cytoplasm may stimulate the ADAM10 sheddase activity, resulting in the release of epidermal growth factors that stimulate the ERK signaling cascade. As p38 activity is also Ca2+ sensitive, elevation in cytoplasmic Ca2+ may independently also activate p38. We hypothesize that Map-dependent MAPK activation, combined with Map-mediated mitochondrial dysfunction, evokes mitochondrial host cell apoptosis, potentially contributing to EPEC colonization and infection of the gut.IMPORTANCE Enteropathogenic E. coli (EPEC) is an important human diarrhea-causing bacterium. The pathogenic effects of EPEC largely depend upon its ability to inject a series of proteins, termed effectors, into the host cells. One such effector is the mitochondrion-associated protein (Map). Map has been shown to induce actin-rich projections (i.e., filopodia) on the infected cell surface and activate a Rho GTPase enzyme termed Cdc42. Nonetheless, although most injected Map localizes to host mitochondria, its functions in the mitochondria remain unknown. Here, we show that Map targeting of mitochondria stimulates the disruption of mitochondrial membrane potential to induce Ca2+ efflux into the host cytoplasm. The efflux stimulates the activity of a protein termed ADAM10, which induces activation of a mitogen-activated protein kinase cascade leading to host cell apoptosis. As apoptosis plays a central role in host-pathogen interactions, our findings provide novel insights into the functions of mitochondrial Map in promoting the EPEC disease.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Cálcio/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Mitocôndrias/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Transporte Biológico , Células CACO-2 , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Transporte Proteico , Transdução de Sinais
20.
Biophys J ; 97(4): 1003-12, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686647

RESUMO

We report on the application of surface plasmon resonance (SPR), based on Fourier transform infrared spectroscopy in the mid-infrared wavelength range, for real-time and label-free sensing of transferrin-induced endocytic processes in human melanoma cells. The evanescent field of the mid-infrared surface plasmon penetrates deep into the cell, allowing highly sensitive SPR measurements of dynamic processes occurring at significant cellular depths. We monitored in real-time, infrared reflectivity spectra in the SPR regime from living cells exposed to human transferrin (Tfn). We show that although fluorescence microscopy measures primarily Tfn accumulation in recycling endosomes located deep in the cell's cytoplasm, the SPR technique measures mainly Tfn-mediated formation of early endocytic organelles located in close proximity to the plasma membrane. Our SPR and fluorescence data are very well described by a kinetic model of Tfn endocytosis, suggested previously in similar cell systems. Hence, our SPR data provide further support to the rather controversial ability of Tfn to stimulate its own endocytosis. Our analysis also yields what we believe is novel information on the role of membrane cholesterol in modulating the kinetics of endocytic vesicle biogenesis and consumption.


Assuntos
Endocitose/efeitos dos fármacos , Melanoma/metabolismo , Modelos Biológicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ressonância de Plasmônio de Superfície/métodos , Transferrina/farmacologia , Vesículas Transportadoras/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Vesículas Transportadoras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa