Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
PLoS Pathog ; 12(9): e1005859, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27611367

RESUMO

Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Metapneumovirus/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Reações Cruzadas , Cristalografia por Raios X , Feminino , Engenharia Genética , Humanos , Metapneumovirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Molecular , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Alinhamento de Sequência , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
2.
J Virol ; 90(7): 3428-38, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763998

RESUMO

UNLABELLED: Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro. In this study, an in-depth analysis of the role of ISG15 in RSV infection is presented. ISG15 overexpression and small interfering RNA (siRNA)-silencing experiments, along with ISG15 knockout (ISG15(-/-)) cells, revealed an anti-RSV effect of the molecule. Conjugation inhibition assays demonstrated that ISG15 exerts its antiviral activity via protein ISGylation. This antiviral activity requires high levels of ISG15 to be present in the cells before RSV infection. Finally, ISG15 is also upregulated in human respiratory pseudostratified epithelia and in nasopharyngeal washes from infants infected with RSV, pointing to a possible antiviral role of the molecule in vivo. These results advance our understanding of the innate immune response elicited by RSV and open new possibilities to control infections by the virus. IMPORTANCE: At present, no vaccine or effective treatment for human respiratory syncytial virus (RSV) is available. This study shows that interferon-stimulated gene 15 (ISG15) lowers RSV growth through protein ISGylation. In addition, ISG15 accumulation highly correlates with the RSV load in nasopharyngeal washes from children, indicating that ISG15 may also have an antiviral role in vivo. These results improve our understanding of the innate immune response to RSV and identify ISG15 as a potential target for virus control.


Assuntos
Citocinas/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/metabolismo , Infecções Respiratórias/imunologia , Ubiquitinas/metabolismo , Linhagem Celular Tumoral , Citocinas/genética , Endopeptidases/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Células HeLa , Humanos , Imunidade Inata , Lactente , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Infecções Respiratórias/virologia , Ubiquitina Tiolesterase , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitinas/genética
3.
J Virol ; 90(11): 5485-5498, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009962

RESUMO

UNLABELLED: Human respiratory syncytial virus (hRSV) vaccine development has received new impetus from structure-based studies of its main protective antigen, the fusion (F) glycoprotein. Three soluble forms of F have been described: monomeric, trimeric prefusion, and trimeric postfusion. Most human neutralizing antibodies recognize epitopes found exclusively in prefusion F. Although prefusion F induces higher levels of neutralizing antibodies than does postfusion F, postfusion F can also induce protection against virus challenge in animals. However, the immunogenicity and protective efficacy of the three forms of F have not hitherto been directly compared. Hence, BALB/c mice were immunized with a single dose of the three proteins adjuvanted with CpG and challenged 4 weeks later with virus. Serum antibodies, lung virus titers, weight loss, and pulmonary pathology were evaluated after challenge. Whereas small amounts of postfusion F were sufficient to protect mice, larger amounts of monomeric and prefusion F proteins were required for protection. However, postfusion and monomeric F proteins were associated with more pathology after challenge than was prefusion F. Antibodies induced by all doses of prefusion F, in contrast to other F protein forms, reacted predominantly with the prefusion F conformation. At high doses, prefusion F also induced the highest titers of neutralizing antibodies, and all mice were protected, yet at low doses of the immunogen, these antibodies neutralized virus poorly, and mice were not protected. These findings should be considered when developing new hRSV vaccine candidates. IMPORTANCE: Protection against hRSV infection is afforded mainly by neutralizing antibodies, which recognize mostly epitopes found exclusively in the viral fusion (F) glycoprotein trimer, folded in its prefusion conformation, i.e., before activation for membrane fusion. Although prefusion F is able to induce high levels of neutralizing antibodies, highly stable postfusion F (found after membrane fusion) is also able to induce neutralizing antibodies and protect against infection. In addition, a monomeric form of hRSV F that shares epitopes with prefusion F was recently reported. Since each of the indicated forms of hRSV F may have advantages and disadvantages for the development of safe and efficacious subunit vaccines, a direct comparison of the immunogenic properties and protective efficacies of the different forms of hRSV F was made in a mouse model. The results obtained show important differences between the noted immunogens that should be borne in mind when considering the development of hRSV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/química , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , Epitopos/imunologia , Feminino , Humanos , Imunização , Imunogenicidade da Vacina , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/imunologia , Conformação Proteica , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/isolamento & purificação , Proteínas Virais de Fusão/administração & dosagem
4.
PLoS Pathog ; 11(7): e1005035, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26161532

RESUMO

Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.


Assuntos
Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Epitopos de Linfócito B/ultraestrutura , Vírus Sinciciais Respiratórios/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Citometria de Fluxo , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/ultraestrutura , Humanos , Estrutura Quaternária de Proteína , Ressonância de Plasmônio de Superfície
5.
Antimicrob Agents Chemother ; 60(11): 6498-6509, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550346

RESUMO

ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Antígenos Virais/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/química , Antígenos Virais/genética , Camelídeos Americanos , Linhagem Celular Tumoral , Células Epiteliais/virologia , Epitopos/química , Epitopos/imunologia , Humanos , Evasão da Resposta Imune/genética , Soros Imunes/química , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Estrutura Secundária de Proteína , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/isolamento & purificação , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
6.
Antimicrob Agents Chemother ; 60(1): 6-13, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26438495

RESUMO

Respiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F protein with subnanomolar affinity. ALX-0171 demonstrated in vitro neutralization superior to that of palivizumab against prototypic RSV subtype A and B strains. Moreover, ALX-0171 completely blocked replication to below the limit of detection for 87% of the viruses tested, whereas palivizumab did so for 18% of the viruses tested at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteínas Virais de Fusão/antagonistas & inibidores , Administração por Inalação , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Antivirais/metabolismo , Antivirais/farmacologia , Feminino , Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Masculino , Modelos Moleculares , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/imunologia , Cavidade Nasal/virologia , Testes de Neutralização , Palivizumab/biossíntese , Palivizumab/imunologia , Palivizumab/farmacologia , Pichia/genética , Pichia/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Sigmodontinae , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
J Virol ; 89(15): 7776-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995258

RESUMO

UNLABELLED: Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability. IMPORTANCE: An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/genética , Evolução Molecular , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Variação Antigênica , Sequência Conservada , Epitopos/química , Epitopos/imunologia , Variação Genética , Humanos , Dados de Sequência Molecular , Filogenia , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/imunologia , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
8.
J Virol ; 88(20): 11802-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078705

RESUMO

Respiratory syncytial virus (RSV) is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. There remains an unmet vaccine need despite decades of research. Insufficient potency, homogeneity, and stability of previous RSV fusion protein (F) subunit vaccine candidates have hampered vaccine development. RSV F and related parainfluenza virus (PIV) F proteins are cleaved by furin during intracellular maturation, producing disulfide-linked F1 and F2 fragments. During cell entry, the cleaved Fs rearrange from prefusion trimers to postfusion trimers. Using RSV F constructs with mutated furin cleavage sites, we isolated an uncleaved RSV F ectodomain that is predominantly monomeric and requires specific cleavage between F1 and F2 for self-association and rearrangement into stable postfusion trimers. The uncleaved RSV F monomer is folded and homogenous and displays at least two key RSV-neutralizing epitopes shared between the prefusion and postfusion conformations. Unlike the cleaved trimer, the uncleaved monomer binds the prefusion-specific monoclonal antibody D25 and human neutralizing immunoglobulins that do not bind to postfusion F. These observations suggest that the uncleaved RSV F monomer has a prefusion-like conformation and is a potential prefusion subunit vaccine candidate. Importance: RSV is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. Development of an RSV vaccine was stymied when a clinical trial using a formalin-inactivated RSV virus made disease, following RSV infection, more severe. Recent studies have defined the structures that the RSV F envelope glycoprotein adopts before and after virus entry (prefusion and postfusion conformations, respectively). Key neutralization epitopes of prefusion and postfusion RSV F have been identified, and a number of current vaccine development efforts are focused on generating easily produced subunit antigens that retain these epitopes. Here we show that a simple modification in the F ectodomain results in a homogeneous protein that retains critical prefusion neutralizing epitopes. These results improve our understanding of RSV F protein folding and structure and can guide further vaccine design efforts.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Epitopos/imunologia , Vírus Sinciciais Respiratórios/imunologia , Humanos , Proteólise
9.
Virol J ; 12: 48, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25888921

RESUMO

BACKGROUND: The majority of pandemic 2009 H1N1 (A(H1N1)pdm09) influenza virus (IV) caused mild symptoms in most infected patients, however, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. The purpose of this work was to study in ferrets the dynamics of infection of two contemporary strains of human A(H1N1)pdm09 IV, one isolated from a patient showing mild disease and the other one from a fatal case. METHODS: Viral strains isolated from a patient showing mild disease-M (A/CastillaLaMancha/RR5661/2009) or from a fatal case-F (A/CastillaLaMancha/RR5911/2009), both without known comorbid conditions, were inoculated in two groups of ferrets and clinical and pathological conditions were analysed. RESULTS: Mild to severe clinical symptoms were observed in animals from both groups. A clinical score distribution was applied in which ferrets with mild clinical signs were distributed on a non-severe group (NS) and ferrets with severe clinical signs on a severe group (S), regardless of the virus used in the infection. Animals on S showed a significant decrease in body weight compared to animals on NS at 4 to 7 days post-infection (dpi). Clinical progress correlated with histopathological findings. Concentrations of haptoglobin (Hp) and serum amyloid A (SAA) increased on both groups after 2 dpi. Clinically severe infected ferrets showed a stronger antibody response and higher viral titres after infection (p = 0.001). CONCLUSIONS: The severity in the progress of infection was independent from the virus used for infection suggesting that the host immune response was determinant in the outcome of the infection. The diversity observed in ferrets mimicked the variability found in the human population.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Adulto , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Furões/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/sangue , Influenza Humana/patologia , Pulmão/patologia , Pulmão/virologia , Masculino , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 109(8): 3089-94, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323598

RESUMO

Human respiratory syncytial virus (hRSV) is the most important viral agent of pediatric respiratory infections worldwide. The only specific treatment available today is a humanized monoclonal antibody (Palivizumab) directed against the F glycoprotein, administered prophylactically to children at very high risk of severe hRSV infections. Palivizumab, as most anti-F antibodies so far described, recognizes an epitope that is shared by the two conformations in which hRSV_F can fold, the metastable prefusion form and the highly stable postfusion conformation. We now describe a unique class of antibodies specific for the prefusion form of this protein that account for most of the neutralizing activity of either a rabbit serum raised against a vaccinia virus recombinant expressing hRSV_F or a human Ig preparation (Respigam), which was used for prophylaxis before Palivizumab. These antibodies therefore offer unique possibilities for immune intervention against hRSV, and their production should be assessed in trials of hRSV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/terapia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Animais , Humanos , Imunização , Dados de Sequência Molecular , Estabilidade Proteica , Coelhos , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vaccinia virus/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura
11.
J Gen Virol ; 95(Pt 10): 2140-2145, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25000959

RESUMO

Alternative methods to the standard haemagglutination inhibition (HI) and neutralization tests to probe the antigenic properties of the influenza virus haemagglutinin (HA) were developed in this study. Vaccinia virus recombinants expressing reference HAs were used to immunize rabbits from which polyclonal antibodies were obtained. These antibodies were subtype specific but showed limited intra-subtype strain specificity in ELISA. The discriminatory capacity of these antibodies was, however, markedly increased after adsorption to cells infected with heterologous influenza viruses, revealing antigenic differences that were otherwise undistinguishable by standard HI and neutralization tests. Furthermore, the unadsorbed antibodies could be used to select escape mutants of the reference strain, which after sequencing unveiled amino acid changes responsible of the noted antigenic differences. These procedures therefore provide alternative methods for the antigenic characterization of influenza HA and might be useful in studies of HA antigenic evolution.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Orthomyxoviridae/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Humanos , Imunização/métodos , Coelhos , Vaccinia virus/genética
12.
J Gen Virol ; 95(Pt 5): 1033-1042, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24531414

RESUMO

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283-6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação de Sentido Incorreto , RNA Viral/genética , Análise de Sequência de DNA , Espanha
13.
Curr Top Microbiol Immunol ; 372: 59-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24362684

RESUMO

Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética , Especificidade de Anticorpos , Variação Antigênica/imunologia , Antígenos Virais/imunologia , Evolução Molecular , Humanos , Epidemiologia Molecular , Filogenia , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/imunologia , Especificidade da Espécie , Vacinas de Subunidades Antigênicas , Proteínas Virais de Fusão/classificação , Proteínas Virais de Fusão/imunologia
14.
BMC Infect Dis ; 14: 544, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25358423

RESUMO

BACKGROUND: Bronchiolitis caused by the respiratory syncytial virus (RSV) and its related complications are common in infants born prematurely, with severe congenital heart disease, or bronchopulmonary dysplasia, as well as in immunosuppressed infants. There is a rich literature on the different aspects of RSV infection with a focus, for the most part, on specific risk populations. However, there is a need for a systematic global analysis of the impact of RSV infection in terms of use of resources and health impact on both children and adults. With this aim, we performed a systematic search of scientific evidence on the social, economic, and health impact of RSV infection. METHODS: A systematic search of the following databases was performed: MEDLINE, EMBASE, Spanish Medical Index, MEDES-MEDicina in Spanish, Cochrane Plus Library, and Google without time limits. We selected 421 abstracts based on the 6,598 articles identified. From these abstracts, 4 RSV experts selected the most relevant articles. They selected 65 articles. After reading the full articles, 23 of their references were also selected. Finally, one more article found through a literature information alert system was included. RESULTS: The information collected was summarized and organized into the following topics: 1. Impact on health (infections and respiratory complications, mid- to long-term lung function decline, recurrent wheezing, asthma, other complications such as otitis and rhino-conjunctivitis, and mortality; 2. Impact on resources (visits to primary care and specialists offices, emergency room visits, hospital admissions, ICU admissions, diagnostic tests, and treatments); 3. Impact on costs (direct and indirect costs); 4. Impact on quality of life; and 5. Strategies to reduce the impact (interventions on social and hygienic factors and prophylactic treatments). CONCLUSIONS: We concluded that 1. The health impact of RSV infection is relevant and goes beyond the acute episode phase; 2. The health impact of RSV infection on children is much better documented than the impact on adults; 3. Further research is needed on mid- and long-term impact of RSV infection on the adult population, especially those at high-risk; 4. There is a need for interventions aimed at reducing the impact of RSV infection by targeting health education, information, and prophylaxis in high-risk populations.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Asma/complicações , Pré-Escolar , Feminino , Saúde Global , Custos de Cuidados de Saúde , Educação em Saúde , Hispânico ou Latino , Hospitalização/economia , Humanos , Lactente , Recém-Nascido , Masculino , Visita a Consultório Médico/economia , Qualidade de Vida , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/economia , Vírus Sinciciais Respiratórios/imunologia
15.
Subcell Biochem ; 68: 467-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737062

RESUMO

Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (i) they first bind to specific surface receptors of the target cell membrane and then, (ii) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps as other membrane fusions that occur for instance in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, liberating the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter describes the different types of viral fusogens and their mode of action, as are currently known.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Internalização do Vírus , Vírus/metabolismo , Animais , Humanos , Replicação Viral
16.
Immunol Cell Biol ; 90(10): 978-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22929180

RESUMO

Respiratory syncytial virus causes lower respiratory tract infections in infancy and old age, affecting also immunocompromised patients. The viral fusion protein is an important vaccine candidate eliciting antibody and cell-mediated immune responses. CD8(+) cytotoxic T lymphocytes (CTLs) are known to have a role in both lung pathology and viral clearance. In BALB/c mice, the fusion protein epitope F249-258 is presented to CTLs by the murine major histocompatibility complex (MHC) class I molecule K(d). In cells infected with recombinant vaccinia viruses encoding the fusion protein, F249-258 is presented by MHC class I molecules through pathways that are independent of the transporters associated with antigen processing (TAP). We have now found that F249-258 can be generated from non-infectious virus from an exogenous source. Antigen processing follows a lysosomal pathway that appears to require autophagy. As a practical consequence, inactivated virus suffices for in vivo priming of virus-specific CTLs.


Assuntos
Apresentação de Antígeno , Epitopos de Linfócito T/imunologia , Lisossomos/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Virais/imunologia , Idoso , Animais , Antígenos Ly/metabolismo , Antígenos Virais/genética , Antígenos Virais/imunologia , Autofagia , Linhagem Celular , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Hospedeiro Imunocomprometido , Lactente , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vírus Sinciciais Respiratórios/metabolismo , Linfócitos T Citotóxicos/virologia
17.
J Mol Recognit ; 25(3): 136-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22407977

RESUMO

In the human adaptation and optimization of a mouse anti-human respiratory syncytial virus neutralizing antibody, affinity assessment was crucial to distinguish among potential candidates and to evaluate whether this correlated with function in vitro and in vivo. This affinity assessment was complicated by the trimeric nature of the antigen target, respiratory syncytial virus F (RSV-F) glycoprotein. In the initial affinity screen, surface plasmon resonance was used to determine the intrinsic binding affinities of anti-RSV-F Fab and immunoglobulin G (IgG) to the extracellular domain of RSV-F. This assessment required minimal biotinylation of the RSV-F protein and design of a capture strategy to minimize avidity effects. Approximately 30 Fabs were selected from three optimization phage display libraries on the basis of an initial ELISA screen. Surface plasmon resonance analysis demonstrated the success of optimization with some candidates from the screened libraries having low picomolar dissociation constants, more than 700-fold tighter than the parental monoclonal antibody (B21M). The affinities of these antibodies were further evaluated by a kinetic exclusion assay, a solution binding technology. One IgG (monoclonal antibody 029) displayed a low picomolar K(D) comparable with that of motavizumab, an RSV antibody in clinical study. Kinetic exclusion assay showed that two other of the matured IgGs (011 and 019) had sub-picomolar dissociation constants that could not be resolved further. We discuss the relevance of these interaction analysis results in the light of recently published data on the mechanism of F-driven viral fusion during paramyxoviral infection and 101F epitope conservation revealed from the recent crystal structure of RSV-F in the post-fusion state.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Afinidade de Anticorpos , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Biotinilação , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Cinética , Camundongos , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Virais de Fusão/química
18.
J Virol ; 85(6): 2771-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21228237

RESUMO

Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.


Assuntos
Furina/metabolismo , Vírus Sinciciais Respiratórios/fisiologia , Vírus Sendai/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Fusão Celular , Estabilidade Proteica , Vírus Sinciciais Respiratórios/genética , Vírus Sendai/genética , Temperatura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
19.
J Virol ; 85(23): 12650-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937649

RESUMO

The paramyxovirus F protein promotes fusion of the viral and cell membranes for virus entry, as well as cell-cell fusion for syncytium formation. Most paramyxovirus F proteins are triggered at neutral pH to initiate membrane fusion. Previous studies, however, demonstrated that human metapneumovirus (hMPV) F proteins are triggered at neutral or acidic pH in transfected cells, depending on the strain origin of the F sequences (S. Herfst et al., J. Virol. 82:8891-8895, 2008). We now report an extensive mutational analysis which identifies four variable residues (294, 296, 396, and 404) as the main determinants of the different syncytial phenotypes found among hMPV F proteins. These residues lie near two conserved histidines (H368 and H435) in a three-dimensional (3D) model of the pretriggered hMPV F trimer. Mutagenesis of H368 and H435 indicates that protonation of these histidines (particularly His435) is a key event to destabilize the hMPV F proteins that require low pH for cell-cell fusion. The syncytial phenotypes were reproduced in cells infected with the corresponding hMPV strains. However, the low-pH dependency for syncytium formation could not be related with a virus entry pathway dependent on an acidic environment. It is postulated that low pH may be acting for some hMPV strains as certain destabilizing mutations found in unusual strains of other paramyxoviruses. In any case, the results presented here and those reported by Schowalter et al. (J. Virol. 83:1511-1522, 2009) highlight the relevance of certain residues in the linker region and domain II of the pretriggered hMPV F protein for the process of membrane fusion.


Assuntos
Fusão de Membrana , Metapneumovirus/patogenicidade , Infecções por Paramyxoviridae/virologia , Proteínas Virais de Fusão/genética , Replicação Viral , Sequência de Aminoácidos , Animais , Células Cultivadas , Chlorocebus aethiops , Células Gigantes/metabolismo , Células Gigantes/patologia , Histidina/genética , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Rim/citologia , Rim/metabolismo , Rim/virologia , Modelos Moleculares , Dados de Sequência Molecular , Infecções por Paramyxoviridae/metabolismo , Fenótipo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas Virais de Fusão/metabolismo
20.
J Virol ; 84(16): 7970-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534864

RESUMO

Human respiratory syncytial virus (HRSV) fusion (F) protein is an essential component of the virus envelope that mediates fusion of the viral and cell membranes, and, therefore, it is an attractive target for drug and vaccine development. Our aim was to analyze the neutralizing mechanism of anti-F antibodies in comparison with other low-molecular-weight compounds targeted against the F molecule. It was found that neutralization by anti-F antibodies is related to epitope specificity. Thus, neutralizing and nonneutralizing antibodies could bind equally well to virions and remained bound after ultracentrifugation of the virus, but only the former inhibited virus infectivity. Neutralization by antibodies correlated with inhibition of cell-cell fusion in a syncytium formation assay, but not with inhibition of virus binding to cells. In contrast, a peptide (residues 478 to 516 of F protein [F478-516]) derived from the F protein heptad repeat B (HRB) or the organic compound BMS-433771 did not interfere with virus infectivity if incubated with virus before ultracentrifugation or during adsorption of virus to cells at 4 degrees C. These inhibitors must be present during virus entry to effect HRSV neutralization. These results are best interpreted by asserting that neutralizing antibodies bind to the F protein in virions interfering with its activation for fusion. Binding of nonneutralizing antibodies is not enough to block this step. In contrast, the peptide F478-516 or BMS-433771 must bind to F protein intermediates generated during virus-cell membrane fusion, blocking further development of this process.


Assuntos
Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/imunologia , Benzimidazóis/farmacologia , Linhagem Celular , Cricetinae , Humanos , Testes de Neutralização , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa