Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Immunity ; 49(5): 857-872.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30413363

RESUMO

Lineage-committed αß and γδ T cells are thought to originate from common intrathymic multipotent progenitors following instructive T cell receptor (TCR) signals. A subset of lymph node and mucosal Vγ2+ γδ T cells is programmed intrathymically to produce IL-17 (Tγδ17 cells), however the role of the γδTCR in development of these cells remains controversial. Here we generated reporter mice for the Tγδ17 lineage-defining transcription factor SOX13 and identified fetal-origin, intrathymic Sox13+ progenitors. In organ culture developmental assays, Tγδ17 cells derived primarily from Sox13+ progenitors, and not from other known lymphoid progenitors. Single cell transcriptome assays of the progenitors found in TCR-deficient mice demonstrated that Tγδ17 lineage programming was independent of γδTCR. Instead, generation of the lineage committed progenitors and Tγδ17 cells was controlled by TCF1 and SOX13. Thus, T lymphocyte lineage fate can be prewired cell-intrinsically and is not necessarily specified by clonal antigen receptor signals.


Assuntos
Autoantígenos/metabolismo , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Autoantígenos/genética , Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunofenotipagem , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Transcriptoma
2.
Semin Immunol ; 65: 101702, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463711

RESUMO

There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the ß-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.


Assuntos
Linfócitos T CD8-Positivos , Timo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Ativação Linfocitária , Diferenciação Celular
3.
Nat Immunol ; 15(7): 687-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908390

RESUMO

The catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.


Assuntos
Linfócitos T/fisiologia , Proteína-Tirosina Quinase ZAP-70/fisiologia , Animais , Cálcio/metabolismo , Catálise , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais , Quinase Syk
4.
J Immunol ; 212(8): 1257-1267, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560813

RESUMO

The Canadian Society for Immunology (CSI) established a formal Equity, Diversity, and Inclusion (EDI) Committee with the goal of providing EDI advocacy and leadership within the CSI, as well as in the broader scientific community. A first task of this committee was to review the publicly available historical data on gender representation within the CSI's membership, leadership, award recipients, and conference chairs/presenters as a step in establishing a baseline reference point and monitoring the trajectory of future success in achieving true inclusion. We found that, except for overall membership and a specific subset of awards, all categories showed a historical bias toward men, particularly prior to 2010. Bias persists in various categories, evident even in recent years. However, we note an encouraging trend toward greater gender parity, particularly in the roles of President, symposium presenters, and workshop chairs, especially from 2017 onward. We present these findings as well as our recommendations to enhance inclusivity. These include a more comprehensive collection and secure storage of self-identification data, emphasis on EDI as an essential component of all annual meeting activities, and innovative measures of outreach, collaboration, and leadership with the aim of making the CSI a model for improving EDI in other professional research societies.


Assuntos
Distinções e Prêmios , Liderança , Feminino , Humanos , Masculino , Canadá , Estudos Retrospectivos , Sociedades Médicas
5.
J Immunol ; 211(2): 175-179, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265392

RESUMO

Vitamin D deficiency is associated with the development of autoimmunity, which arises from defects in T cell tolerance to self-antigens. Interactions of developing T cells with medullary thymic epithelial cells, which express tissue-restricted Ags, are essential for the establishment of central tolerance. However, vitamin D signaling in the thymus is poorly characterized. We find that stromal and hematopoietic cells in the mouse thymus express the vitamin D receptor (Vdr) and Cyp27b1, the enzyme that produces hormonal 1,25-dihydroxyvitamin D (1,25D). Treatment of cultured thymic slices with 1,25D enhances expression of the critical medullary thymic epithelial cell transcription factor autoimmune regulator (Aire), its colocalization with the Vdr, and enhances tissue-restricted Ag gene expression. Moreover, the Vdr interacts with Aire in a 1,25D-dependent manner and recruits Aire to DNA at vitamin D response elements, where it acts as a Vdr coactivator. These data link vitamin D signaling directly to critical transcriptional events necessary for central tolerance.


Assuntos
Receptores de Calcitriol , Fatores de Transcrição , Animais , Camundongos , Células Epiteliais , Regulação da Expressão Gênica , Receptores de Calcitriol/metabolismo , Timo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitamina D/metabolismo , Proteína AIRE
6.
Immunol Cell Biol ; 101(6): 473-478, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393193

RESUMO

The Canadian Society for Immunology (CSI) organized an Equity, Diversity and Inclusion (EDI) training workshop during its 2022 Scientific Meeting to improve understanding of EDI and explore strategies to achieve EDI goals in the scientific environment. The workshop focused on identifying Specific, Measurable, Achievable, Realistic and Timely (SMART) goals related to EDI in academia through small group discussions and learning exercises. Attendees highlighted several equity considerations within the field of academic immunology, including financial barriers, lack of diversity in research teams and gender bias; they emphasized the importance of creating an inclusive and accessible research environment. The collection and use of data relevant to EDI goals within the CSI were also identified as challenges. Fostering a culture of active and nonjudgmental listening within the CSI community is another aspirational goal to address EDI. The workshop received positive feedback from attendees, who noted that more diverse voices and specific actions for local research environments are needed.


Assuntos
Diversidade, Equidade, Inclusão , Feminino , Humanos , Masculino , Canadá , Comunicação , Sexismo
7.
J Immunol ; 207(4): 1055-1064, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34312259

RESUMO

Central tolerance aims to limit the production of T lymphocytes bearing TCR with high affinity for self-peptide presented by MHC molecules. The accumulation of thymocytes with such receptors is limited by negative selection or by diversion into alternative differentiation, including T regulatory cell commitment. A role for the orphan nuclear receptor NR4A3 in negative selection has been suggested, but its function in this process has never been investigated. We find that Nr4a3 transcription is upregulated in postselection double-positive thymocytes, particularly those that have received a strong selecting signal and are destined for negative selection. Indeed, we found an accumulation of cells bearing a negative selection phenotype in NR4A3-deficient mice as compared with wild-type controls, suggesting that Nr4a3 transcriptional induction is necessary to limit accumulation of self-reactive thymocytes. This is consistent with a decrease of cleaved caspase-3+-signaled thymocytes and more T regulatory and CD4+Foxp3-HELIOS+ cells in the NR4A3-deficient thymus. We further tested the role for NR4A3 in negative selection by reconstituting transgenic mice expressing the OVA Ag under the control of the insulin promoter with bone marrow cells from OT-I Nr4a3 +/+ or OT-I Nr4a3 -/- mice. Accumulation of autoreactive CD8 thymocytes and autoimmune diabetes developed only in the absence of NR4A3. Overall, our results demonstrate an important role for NR4A3 in T cell development.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Esteroides , Animais , Proteínas de Ligação a DNA , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Receptores dos Hormônios Tireóideos , Timócitos , Fatores de Transcrição
8.
Eur J Immunol ; 51(6): 1365-1376, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682083

RESUMO

Studies in murine models show that subthreshold TCR interactions with self-peptide are required for thymic development and peripheral survival of naïve T cells. Recently, differences in the strength of tonic TCR interactions with self-peptide, as read-out by cell surface levels of CD5, were associated with distinct effector potentials among sorted populations of T cells in mice. However, whether CD5 can also be used to parse functional heterogeneity among human T cells is less clear. Our study demonstrates that CD5 levels correlate with TCR signal strength in human naïve CD4+ T cells. Further, we describe a relationship between CD5 levels on naïve human CD4+ T cells and binding affinity to foreign peptide, in addition to a predominance of CD5hi T cells in the memory compartment. Differences in gene expression and biases in cytokine production potential between CD5lo and CD5hi naïve human CD4+ T cells are consistent with observations in mice. Together, these data validate the use of CD5 surface levels as a marker of heterogeneity among human naïve CD4+ T cells with important implications for the identification of functionally biased T- cell populations that can be exploited to improve the efficacy of adoptive cell therapies.


Assuntos
Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígenos CD5/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Autoantígenos/metabolismo , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Humanos , Memória Imunológica , Sinapses Imunológicas , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transdução de Sinais
9.
Immunol Cell Biol ; 100(3): 205-217, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962663

RESUMO

Negative selection of developing T cells plays a significant role in T-cell tolerance to self-antigen. This process relies on thymic antigen-presenting cells which express both self-antigens and cosignaling molecules. Inducible T-cell costimulator (ICOS) belongs to the CD28 family of cosignaling molecules and binds to ICOS ligand (ICOSL). The ICOS signaling pathway plays important roles in shaping the immune response to infections, but its role in central tolerance is less well understood. Here we show that ICOSL is expressed by subsets of thymic dendritic cells and medullary thymic epithelial cells as well as thymic B cells. ICOS expression is upregulated as T cells mature in the thymus and correlates with T-cell receptor signal strength during thymic selection. We also provide evidence of a role for ICOS signaling in mediating negative selection. Our findings suggest that ICOS may fine-tune T-cell receptor signals during thymic selection contributing to the generation of a tolerant T-cell population.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/metabolismo , Antígenos CD28/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo
10.
J Immunol ; 205(1): 133-142, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434937

RESUMO

It is becoming increasingly clear that unconventional T cell subsets, such as NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells, each play distinct roles in the immune response. Subsets of these cell types can lack both CD4 and CD8 coreceptor expression. Beyond these known subsets, we identify CD4-CD8-TCRαß+, double-negative (DN) T cells, in mouse secondary lymphoid organs. DN T cells are a unique unconventional thymic-derived T cell subset. In contrast to CD5high DN thymocytes that preferentially yield TCRαß+ CD8αα intestinal lymphocytes, we find that mature CD5low DN thymocytes are precursors to peripheral DN T cells. Using reporter mouse strains, we show that DN T cells transit through the immature CD4+CD8+ (double-positive) thymocyte stage. Moreover, we provide evidence that DN T cells can differentiate in MHC-deficient mice. Our study demonstrates that MHC-independent thymic selection can yield DN T cells that are distinct from NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells.


Assuntos
Diferenciação Celular/imunologia , Complexo Principal de Histocompatibilidade/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Timócitos/fisiologia , Timo/citologia , Timo/fisiologia
11.
Immunol Cell Biol ; 99(6): 656-667, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33534942

RESUMO

Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic ß cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Antígenos CD5 , Linfócitos T CD8-Positivos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Timo
12.
J Immunol ; 202(3): 966-978, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567730

RESUMO

T cell development depends on sequential interactions of thymocytes with cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells. PSMB11 is a catalytic proteasomal subunit present exclusively in cTECs. Because proteasomes regulate transcriptional activity, we asked whether PSMB11 might affect gene expression in cTECs. We report that PSMB11 regulates the expression of 850 cTEC genes that modulate lymphostromal interactions primarily via the WNT signaling pathway. cTECs from Psmb11 -/- mice 1) acquire features of medullary thymic epithelial cells and 2) retain CD8 thymocytes in the thymic cortex, thereby impairing phase 2 of positive selection, 3) perturbing CD8 T cell development, and 4) causing dramatic oxidative stress leading to apoptosis of CD8 thymocytes. Deletion of Psmb11 also causes major oxidative stress in CD4 thymocytes. However, CD4 thymocytes do not undergo apoptosis because, unlike CD8 thymocytes, they upregulate expression of chaperones and inhibitors of apoptosis. We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/citologia , Complexo de Endopeptidases do Proteassoma/genética , Timócitos/citologia , Animais , Apoptose , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/imunologia , Timo/imunologia , Via de Sinalização Wnt
13.
Immunol Cell Biol ; 97(10): 931-940, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420892

RESUMO

Individual CD4+ T cells can become one of a number of helper (Th) lineages with distinct effector functions. However, whether biases in Th potential exist prior to antigen encounter is unknown. Studies have identified cell-intrinsic functional heterogeneity among naïve T cells that can be parsed based on the strength of T-cell receptor (TCR) interactions with self-peptide. Here, using CD5 levels as a surrogate for the strength of these basal TCR signals, we sought to identify pre-existing effector biases in the CD4+ T-cell lineage. We show that ex vivo-activated CD5lo CD4+ T cells produce greater amounts of the Th1 cytokine interferon-gamma (IFNγ) than their CD5hi counterparts. In addition, a greater percentage of CD5lo effector CD4+ T cells produce IFNγ in both polyclonal and monoclonal CD4+ T-cell populations after antigen challenge in vivo. These results suggest that differential IFNγ production potential exists among CD4+ T cells prior to activation and independent of TCR affinity for foreign antigen.


Assuntos
Antígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Interferon gama/biossíntese , Animais , Antígenos CD/metabolismo , Linhagem Celular , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo
14.
J Immunol ; 199(3): 965-973, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28659353

RESUMO

Neonatal and adult T cells differ in their effector functions. Although it is known that cell-intrinsic differences in mature T cells contribute to this phenomenon, the factors involved remain unclear. Given emerging evidence that the binding strength of a TCR for self-peptide presented by MHC (self-pMHC) impacts T cell function, we sought to determine whether altered thymic selection influences the self-reactivity of the TCR repertoire during ontogeny. We found that conventional and regulatory T cell subsets in the thymus of neonates and young mice expressed higher levels of cell surface CD5, a surrogate marker for TCR avidity for self-pMHC, as compared with their adult counterparts, and this difference in self-reactivity was independent of the germline bias of the neonatal TCR repertoire. The increased binding strength of the TCR repertoire for self-pMHC in neonates was not solely due to reported defects in clonal deletion. Rather, our data suggest that thymic selection is altered in young mice such that thymocytes bearing TCRs with low affinity for self-peptide are not efficiently selected into the neonatal repertoire, and stronger TCR signals accompany both conventional and regulatory T cell selection. Importantly, the distinct levels of T cell self-reactivity reflect physiologically relevant differences based on the preferential expansion of T cells from young mice to fill a lymphopenic environment. Therefore, differences in thymic selection in young versus adult mice skew the TCR repertoire, and the relatively higher self-reactivity of the T cell pool may contribute to the distinct immune responses observed in neonates.


Assuntos
Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Timócitos/imunologia , Adulto , Envelhecimento , Animais , Animais Recém-Nascidos , Antígenos CD5/genética , Antígenos CD5/imunologia , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Sangue Fetal , Humanos , Recém-Nascido , Ativação Linfocitária , Camundongos , Ligação Proteica , Tolerância a Antígenos Próprios , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia
15.
Eur J Immunol ; 47(2): 269-279, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873323

RESUMO

Vaccination with antigen-pulsed CD40-activated B (CD40-B) cells can efficiently lead to the in vivo differentiation of naive CD8+ T cells into fully functional effectors. In contrast to bone marrow-derived dendritic cell (BMDC) vaccination, CD40-B cell priming does not allow for memory CD8+ T-cell generation but the reason for this deficiency is unknown. Here, we show that compared to BMDCs, murine CD40-B cells induce lower expression of several genes regulated by T-cell receptor signaling, costimulation, and inflammation (signals 1-3) in mouse T cells. The reduced provision of signals 1 and 2 by CD40-B cells can be explained by a reduction in the quality and duration of the interactions with naive CD8+ T cells as compared to BMDCs. Furthermore, CD40-B cells produce less inflammatory mediators, such as IL-12 and type I interferon, and increasing inflammation by coadministration of polyriboinosinic-polyribocytidylic acid with CD40-B-cell immunization allowed for the generation of long-lived and functional CD8+ memory T cells. In conclusion, it is possible to manipulate CD40-B-cell vaccination to promote the formation of long-lived functional CD8+ memory T cells, a key step before translating the use of CD40-B cells for therapeutic vaccination.


Assuntos
Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Polinucleotídeos/administração & dosagem , Animais , Linfócitos B/transplante , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Memória Imunológica , Interleucina-4/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C , Vacinação
16.
J Immunol ; 194(3): 1057-1061, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25520400

RESUMO

Negative selection is one of the primary mechanisms that render T cells tolerant to self. Thymic dendritic cells play an important role in negative selection, in line with their ability to induce migratory arrest and sustained TCR signals. Thymocytes themselves display self-peptide/MHC class I complexes, and although there is evidence that they can support clonal deletion, it is not clear whether they do so directly via stable cell-cell contacts and sustained TCR signals. In this study, we show that murine thymocytes can support surprisingly efficient negative selection of Ag-specific thymocytes. Furthermore, we observe that agonist-dependent thymocyte-thymocyte interactions occurred as stable, motile conjugates led by the peptide-presenting thymocyte and in which the trailing peptide-specific thymocyte exhibited persistent elevations in intracellular calcium concentration. These data confirm that self-Ag presentation by thymocytes is an additional mechanism to ensure T cell tolerance and further strengthen the correlation between stable cellular contacts, sustained TCR signals, and efficient negative selection.


Assuntos
Comunicação Celular , Deleção Clonal , Seleção Clonal Mediada por Antígeno , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/imunologia , Timócitos/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Dendríticas , Humanos , Camundongos , Camundongos Transgênicos , Peptídeos/imunologia , Ligação Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(25): E2550-8, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927565

RESUMO

Positive selection of CD8 T cells in the thymus is thought to be a multistep process lasting 3-4 d; however, the discrete steps involved are poorly understood. Here, we examine phenotypic changes, calcium signaling, and intrathymic migration in a synchronized cohort of MHC class I-specific thymocytes undergoing positive selection in situ. Transient elevations in intracellular calcium concentration ([Ca(2+)]i) and migratory pauses occurred throughout the first 24 h of positive selection, becoming progressively briefer and accompanied by a gradual shift in basal [Ca(2+)]i over time. Changes in chemokine-receptor expression and relocalization from the cortex to medulla occurred between 12 and 24 h after the initial encounter with positive-selecting ligands, a time frame at which the majority of thymocytes retain CD4 and CD8 expression and still require T-cell receptor (TCR) signaling to efficiently complete positive selection. Our results identify distinct phases in the positive selection of MHC class I-specific thymocytes that are distinguished by their TCR-signaling pattern and intrathymic location and provide a framework for understanding the multistep process of positive selection in the thymus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Sinalização do Cálcio/imunologia , Movimento Celular/imunologia , Seleção Clonal Mediada por Antígeno/imunologia , Timo/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Sinalização do Cálcio/genética , Movimento Celular/genética , Seleção Clonal Mediada por Antígeno/genética , Camundongos , Camundongos Knockout , Timo/citologia
18.
Immunol Cell Biol ; 93(8): 716-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25744551

RESUMO

Humanized mice represent an important model to study the development and function of the human immune system. While it is known that mouse thymic stromal cells can support human T-cell development, the extent of interspecies cross-talk and the degree to which these systems recapitulate normal human T-cell development remain unclear. To address these questions, we compared conventional and non-conventional T-cell development in a neonatal chimera humanized mouse model with that seen in human fetal and neonatal thymus samples, and also examined the impact of a human HLA-A2 transgene expressed by the mouse stroma. Given that dynamic migration and cell-cell interactions are essential for T-cell differentiation, we also studied the intrathymic migration pattern of human thymocytes developing in a murine thymic environment. We found that both conventional T-cell development and intra-thymic migration patterns in humanized mice closely resemble human thymopoiesis. Additionally, we show that developing human thymocytes engage in short, serial interactions with other human hematopoietic-derived cells. However, non-conventional T-cell differentiation in humanized mice differed from both fetal and neonatal human thymopoiesis, including a marked deficiency of Foxp3(+) T-cell development. These data suggest that although the murine thymic microenvironment can support a number of aspects of human T-cell development, important differences remain, and additional human-specific factors may be required.


Assuntos
Diferenciação Celular , Movimento Celular , Linfócitos T/citologia , Linfócitos T/fisiologia , Animais , Biomarcadores , Comunicação Celular , Microambiente Celular , Expressão Gênica , Genes Reporter , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/fisiologia , Linfopoese , Camundongos , Camundongos Transgênicos , Modelos Animais , Organogênese , Fenótipo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/fisiologia , Timócitos/citologia , Timócitos/fisiologia , Timo/citologia , Timo/embriologia , Timo/fisiologia
19.
Cell Mol Life Sci ; 71(16): 3101-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24682469

RESUMO

Specialized microenvironments within the thymus are comprised of unique cell types with distinct roles in directing the development of a diverse, functional, and self-tolerant T cell repertoire. As they differentiate, thymocytes transit through a number of developmental intermediates that are associated with unique localization and migration patterns. For example, during one particular developmental transition, immature thymocytes more than double in speed as they become mature T cells that are among the fastest cells in the body. This transition is associated with dramatic changes in the expression of chemokine receptors and their antagonists, cell adhesion molecules, and cytoskeletal components to direct the maturing thymocyte population from the cortex to medulla. Here we discuss the dynamic changes in behavior that occur throughout thymocyte development, and provide an overview of the cell-intrinsic and extrinsic mechanisms that regulate human thymocyte migration.


Assuntos
Movimento Celular , Linfopoese , Timócitos/citologia , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Receptores de Quimiocinas/metabolismo , Timócitos/metabolismo , Timo/citologia , Timo/embriologia
20.
Immunol Cell Biol ; 92(10): 872-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155465

RESUMO

The classic anti-viral cytokine interferon (IFN)-ß can be induced during parasitic infection, but relatively little is know about the cell types and signaling pathways involved. Here we show that inflammatory monocytes (IMs), but not neutrophils, produce IFN-ß in response to T. gondii infection. This difference correlated with the mode of parasite entry into host cells, with phagocytic uptake predominating in IMs and active invasion predominating in neutrophils. We also show that expression of IFN-ß requires phagocytic uptake of the parasite by IMs, and signaling through Toll-like receptors (TLRs) and MyD88. Finally, we show that IMs are major producers of IFN-ß in mesenteric lymph nodes following in vivo oral infection of mice, and mice lacking the receptor for type I IFN-1 show higher parasite loads and reduced survival. Our data reveal a TLR and internalization-dependent pathway in IMs for IFN-ß induction to a non-viral pathogen.


Assuntos
Interferon beta/biossíntese , Monócitos/imunologia , Receptores Toll-Like/metabolismo , Toxoplasmose Animal/imunologia , Animais , Imunidade Inata , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Transdução de Sinais , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa