RESUMO
This study aimed to carry out a general diagnosis of the contamination of the coastal marine environment of the Santa Catarina state (SC, Brazil) by different classes of environmental pollutants, as well as to evaluate possible adverse effects of the contaminants on biochemical biomarkers of oysters, Crassostrea gasar and Crassostrea rhizophorae. 107 chemicals were evaluated in water, sediment and oyster samples from nine sites along the coastline of SC. We also examined various biochemical biomarkers in the oysters' gills and digestive glands to assess potential effects of contaminants. In general, the northern and central regions of the littoral of SC presented higher occurrences and magnitudes of contaminants than the southern region, which is probably related to higher urbanization of center and northern areas of the littoral. The biomarker analysis in the oysters reflected these contamination patterns, with more significant alterations observed in regions with higher levels of pollutants. Our results may serve as a first baseline for future and more extensive monitoring actions and follow-up of the degree of contamination in the state, allowing for inspection actions and management of areas most affected by marine pollutants.
Assuntos
Crassostrea , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Brasil , Biomarcadores , Brânquias , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodosRESUMO
Florianópolis, a city located in the Santa Catarina State in southern Brazil, is the national leading producer of bivalve mollusks. The quality of bivalve mollusks is closely related to the sanitary conditions of surrounding waters where they are cultivated. Presently, cultivation areas receive large amounts of effluents derived mainly from treated and non-treated domestic, rural, and urban sewage. This contributes to the contamination of mollusks with trace metals, pesticides, other organic compounds, and human pathogens such as viruses, bacteria, and protozoan. The aim of this study was to perform a thorough diagnosis of the shellfish growing areas in Florianópolis, on the coast of Santa Catarina. The contamination levels of seawater, sediments, and oysters were evaluated for their microbiological, biochemical, and chemical parameters at five sea sites in Florianópolis, namely three regular oyster cultivation areas (Sites 1, 2, and oyster supplier), a polluted site (Site 3), and a heavily polluted site (Site 4). Samples were evaluated at day zero and after 14 days. Seawater and sediment samples were collected just once, at the end of the experiment. Antioxidant defenses, which may occur in contaminated environments in response to the increased production of reactive oxygen species (ROS) by organisms, were analyzed in oysters, as well as organic compounds (in oysters and sediment samples) and microbiological contamination (in oysters and seawater samples). The results showed the presence of the following contaminants: fecal coliforms in seawater samples (four sites), human adenovirus (all sites), human noroviruses GI and GII (two sites), Hepatitis A viruses (one site), JC Polyomavirus in an oyster sample from the oyster supplier, Giardia duodenalis cysts, and Cryptosporidium sp oocysts (one site). Among organochlorine pesticides, only DDT (dichlorodiphenyltrichloroethane) and HCH (hexachlorocyclohexane) were detected in some sediment and oysters samples in very low levels; site 4 had the highest concentrations of total aliphatic hydrocarbons, PAHs, and linear alkylbenzenes (LABs) found either in oysters or in sediment samples. The major concentration of fecal sterol coprostanol was found at site 4, followed by site 3. After 14 days of allocation in the four selected sites, there was a significant difference in the enzymes analyzed at the monitored spots. The detection of different contaminants in oysters, seawater, and sediment samples in the present study shows the impact untreated or inadequately treated effluents have on coastal areas. These results highlight the need for public investment in adequate wastewater treatment and adequate treatment of oysters, ensuring safe areas for shellfish production as well as healthier bivalve mollusks for consumption.
Assuntos
Monitoramento Ambiental/métodos , Moluscos/metabolismo , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Brasil , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Humanos , Invertebrados/metabolismo , Metais/análise , Metais/química , Metais/metabolismo , Norovirus/isolamento & purificação , Compostos Orgânicos/análise , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Ostreidae/microbiologia , Ostreidae/virologia , Praguicidas/análise , Praguicidas/química , Praguicidas/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Água do Mar/virologia , Esgotos/análise , Microbiologia da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluição da Água/análiseRESUMO
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 µM) and FLU (0.6 and 1.2 µM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 µM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 µM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Assuntos
Crassostrea/efeitos dos fármacos , Fluorenos/toxicidade , Pirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Crassostrea/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorenos/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pirenos/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Te study compared the hatchery recovery efficiency and survival rate of Perna perna spats using larvae submitted to four conditions, prior to settlement, tested with for different collectors. In 15 days old larvae (eyed larvae, T1), transparent nylon thread collectors presented the best results for spats recovered per meter of collector. The 28 days old larvae (foot larvae) stored under refrigeration before settlement (T3 with water and T4 without water) showed no significant differences between the spat number in all the collectors. The brown multi-thread collector was more efficient in T 4. The blue polyamide thread collector was the most efficient with 28 days old larvae settled directly, without refrigeration (T2). Treatment 1 showed the highest spats recovery percentage in the collectors (89.44 percent) in relation to the tank wall. The results showed that the efficiency of the collector depended on the methodology to prepare the larvae and the material used in the collector.
Comparamos a eficiência de recuperação e sobrevivência em laboratório de pré-sementes de Perna perna utilizando larvas submetidas a 4 situações de preparação, antes do assentamento, testadas em 4 diferentes coletores. Em larvas de 15 dias (com olho, T1), coletores de rede de nylon transparente apresentaram os melhores resultados de recuperação de indivíduos por metro de coletor. Larvas de 28 dias (com pé), mantidas em condições de resfriamento antes do assentamento (T3 com água e T4 sem água) não apresentaram diferença significativa no número de animais recuperados em todos os coletores. O coletor de rede de polietileno marrom foi mais eficiente no T4. O coletor de rede de poliamida azul foi mais eficiente com as larvas de 28 dias, colocadas diretamente para assentar, sem resfriamento (T2). O tratamento T1 foi o que apresentou o maior percentual de eficiência de recuperação nos coletores (89,44 por cento), em relação aos animais assentados na parede do tanque. Os resultados mostram que a eficiência do coletor é dependente da metodologia de preparação das larvas para assentamento e o material usado no coletor.