Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Histochem ; 124(7): 151949, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007436

RESUMO

Male infertility affects many couples around the world and can be related to environmental factors such as exposure to high temperatures. Even so, automated methods evaluating the seminiferous tubules to detect testicular damage are still scarce. In search of new approaches to automation in the microscopic analysis of the testis; the present study used the fractal dimension, lacunarity, multifractality and quantitative morphometry to quantify changes in microphotographs of the seminiferous lumen in testicles reversibly damaged by heat stress (43 °C, 12 min). The parameters fractal dimension, lacunarity, multifractality (Dq and α), perimeter, feret and circularity were able to detect changes in the seminiferous lumen at 7, 15 and 30 days after the testicular damage. These methods also detected the recovery of spermatogenesis at 60 days after heat stress. Area, f(α), centroid X and Y, roundness, rectangle height and width were unable to detect changes caused by heat stress. In conclusion, computer assisted methods applied to the seminiferous lumen images can be a useful new viewpoint to analyze microscopic changes in the testicles, a fast low-cost tool to assist in the automated quantification of testicular damage.


Assuntos
Fractais , Testículo , Resposta ao Choque Térmico , Humanos , Masculino , Túbulos Seminíferos , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa