Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614419

RESUMO

The technology of producing threads, especially in materials that are difficult to cut, is a rare subject of research and scientific publications. The requirements for the production of these elements apply not only to the geometry, but also to the quality of the surface obtained. This is particularly important in the aviation industry, where the durability of the threaded connection affects passenger safety. Due to the design of the thread, the quality of its surface is assessed visually in industrial practice. The authors of this study decided to examine the surface topography of external threads made by turning on Inconel 718 shafts in order to confirm the visual evaluation, as well as to investigate the influence of such factors as cutting speed, turning direction and type of profile. Three types of contours were cut for the research: triangular, trapezoidal symmetrical and trapezoidal asymmetrical. Turning of each was carried out twice at cutting speeds vc = 17 m/min and vc = 30 m/min. On each of the threads, the side surface of the profile made in the direction of the insert feed and the opposite surface were examined. The surface texture parameters Sa, Sq, Sp, Sv, Sz, Ssk and Sku were determined and compared. It was noticed that the thread surfaces show a tendency to irregular roughness, which was confirmed by the analysis of the Sku and Ssk coefficients. The sides of the contours made in the direction of the insert feed are characterized by a higher roughness in relation to the opposite sides, which may result from high cutting forces and difficulties with chip evacuation. With the cutting speed being considered, lower values of Sa and Sq were obtained for vc = 17 m/min, which differed from the visual assessment, proving its high subjectivity.

2.
Materials (Basel) ; 14(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771762

RESUMO

BACKGROUND: This study aimed to determine the kinetic frictional force (FF) of the recently produced TiNbTaZrO (Gummetal) orthodontic wire and compare it to the widely used wires of stainless steel (SS), nickel-titanium (NiTi), cobalt-chromium (CoCr) and titanium-molybdenum (TiMo) alloys. METHODS: Five types of 0.016″ × 0.022″ wires were ligated with elastic ligatures to 0.018″ × 0.025″ SS brackets. The dynamic FFs between the brackets and ligated wires were measured utilizing a specialized tensile tester machine. Prior sample sizes for different archwires were conducted using power analysis for the general linear models. The existence of significant differences in FF between examined materials was initially confirmed by the one-way analysis of variance (ANOVA) with further evidence of pairwise differences by Tukey's Honest Significant Difference test. RESULTS: The pairwise differences between means of kinetic FFs for NiTi, CoCr, and Gummetal wires were not statistically significant (adjusted p-value > 0.05). Stainless steel alloy presented the lowest FF values significantly different from other groups (adjusted p-value < 0.05). On the contrary, TiMo wires showed significantly greater FFs (adjusted p-value < 0.05) than other alloys. CONCLUSIONS: Gummetal orthodontic wire exhibits similar frictional resistance as NiTi and CoCr wires. Bendable TiNbTaZrO wire might be used for sliding mechanics due to its favorable frictional properties.

3.
Materials (Basel) ; 14(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34832159

RESUMO

The investment casting method supported with 3D-printing technology, allows the production of unit castings or prototypes with properties most similar to those of final products. Due to the complexity of the process, it is very important to control the dimensions in the initial stages of the process. This paper presents a comparison of non-contact measurement systems applied for testing of photopolymer 3D-printed injection die used in investment casting. Due to the required high quality of the surface parameters, the authors decided to use the DPP (Daylight Polymer Printing) 3D-printing technology to produce an analyzed injection die. The X-ray CT, Structured blue-light scanner and focus variation microscope measurement techniques were used to avoid any additional damages to the injection die that may arise during the measurement. The main objective of the research was to analyze the possibility of using non-contact measurement systems as a tool for analyzing the quality of the surface of a 3D-printed injection die. Dimensional accuracy analysis, form and position deviations, defect detection, and comparison with a CAD model were carried out.

4.
Materials (Basel) ; 13(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872624

RESUMO

The objective of this work is to study the geometric properties of surface topographies of hot-work tool steel created by electric discharge machining (EDM) using motif and multiscale analysis. The richness of these analyses is tested through calculating the strengths of the correlations between discharge energies and resulting surface characterization parameters, focusing on the most representative surface features-craters, and how they change with scale. Surfaces were created by EDM using estimated energies from 150 to 9468 µJ and measured by focus variation microscope. The measured topographies consist of overlapping microcraters, of which the geometry was characterized using three different analysis: conventional with ISO parameters, and motif and multiscale curvature tensor analysis. Motif analysis uses watershed segmentation which allows extraction and geometrically characterization of each crater. Curvature tensor analysis focuses on the characterization of principal curvatures and their function and their evolution with scale. Strong correlations (R2 > 0.9) were observed between craters height, diameter, area and curvature using linear and logarithmic regressions. Conventional areal parameter related to heights dispersion were found to correlate stronger using logarithmic regression. Geometric characterization of process-specific topographic formations is considered to be a natural and intuitive way of analyzing the complexity of studied surfaces. The presented approach allows extraction of information directly relating to the shape and size of topographic features of interest. In the tested conditions, the surface finish is mostly affected and potentially controlled by discharge energy at larger scales which is associated with sizes of fabricated craters.

5.
Nanomaterials (Basel) ; 10(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650442

RESUMO

Experimental studies reveal that the simultaneous addition of zinc dialkyl dithiophosphates (ZDDPs) and multi-wall carbon nanotubes (MWCNTs) to a poly-alpha-olefin base oil strongly reduces wear. In this paper, it is shown that MWCNTs promote the formation of an anti-wear (AW) layer on the metal surface that is much thicker than what ZDDPs can create as a sole additive. More importantly, the nanotubes' action is indirect, i.e., MWCNTs neither mechanically nor structurally strengthen the AW film. A new mechanism for this effect is also proposed, which is supported by detailed tribometer results, friction track 3D-topography measurements, electron diffraction spectroscopy (EDS), and Raman spectroscopy. In this mechanism, MWCNTs mediate the transfer of both thermal and electric energy released on the metal surface in the friction process. As a result, this energy penetrates more deeply into the oil volume, thus extending the spatial range of tribochemical reactions involving ZDDPs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa