Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 141(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260516

RESUMO

Pulmonary arterial hypertension (PAH) exerts substantial pressure overload on the right ventricle (RV), inducing RV remodeling and myocardial tissue adaptation often leading to right heart failure. The associated RV free wall (RVFW) adaptation involves myocardial hypertrophy, augmented intrinsic contractility, collagen fibrosis, and structural remodeling in an attempt to cope with pressure overload. If RVFW adaptation cannot maintain the RV stroke volume (SV), RV dilation will prevail as an exit mechanism, which usually decompensates RV function, leading to RV failure. Our knowledge of the factors determining the transition from the upper limit of RVFW adaptation to RV decompensation and the role of fiber remodeling events such as extracellular fibrosis and fiber reorientation in this transition remains very limited. Computational heart models that connect the growth and remodeling (G&R) events at the fiber and tissue levels with alterations in the organ-level function are essential to predict the temporal order and the compensatory level of the underlying mechanisms. In this work, building upon our recently developed rodent heart models (RHM) of PAH, we integrated mathematical models that describe volumetric growth of the RV and structural remodeling of the RVFW. The time-evolution of RV remodeling from control and post-PAH time points was simulated. The results suggest that the augmentation of the intrinsic contractility of myofibers, accompanied by an increase in passive stiffness of RVFW, is among the first remodeling events through which the RV strives to maintain the cardiac output. Interestingly, we found that the observed reorientation of the myofibers toward the longitudinal (apex-to-base) direction was a maladaptive mechanism that impaired the RVFW contractile pattern and advanced along with RV dilation at later stages of PAH. In fact, although individual fibers were more contractile post-PAH, the disruption in the optimal transmural fiber architecture compromised the effective contractile function of the RVFW, contributing to the depressed ejection fraction (EF) of the RV. Our findings clearly demonstrate the critical need for developing multiscale approaches that can model and delineate relationships between pathological alterations in cardiac function and underlying remodeling events across fiber, cellular, and molecular levels.

2.
ArXiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38855538

RESUMO

Left ventricular diastolic dysfunction (LVDD) is a group of diseases that adversely affect the passive phase of the cardiac cycle and can lead to heart failure. While left ventricular end-diastolic pressure (LVEDP) is a valuable prognostic measure in LVDD patients, traditional invasive methods of measuring LVEDP present risks and limitations, highlighting the need for alternative approaches. This paper investigates the possibility of measuring LVEDP non-invasively using inverse in-silico modeling. We propose the adoption of patient-specific cardiac modeling and simulation to estimate LVEDP and myocardial stiffness from cardiac strains. We have developed a high-fidelity patient-specific computational model of the left ventricle. Through an inverse modeling approach, myocardial stiffness and LVEDP were accurately estimated from cardiac strains that can be acquired from in vivo imaging, indicating the feasibility of computational modeling to augment current approaches in the measurement of ventricular pressure. Integration of such computational platforms into clinical practice holds promise for early detection and comprehensive assessment of LVDD with reduced risk for patients.

3.
Acta Biomater ; 173: 109-122, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925122

RESUMO

Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Remodelação Ventricular , Miocárdio/patologia , Infarto do Miocárdio/patologia , Insuficiência Cardíaca/patologia , Colágeno
4.
Res Sq ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883756

RESUMO

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

5.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895325

RESUMO

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

6.
Comput Biol Med ; 163: 107134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379617

RESUMO

Impaired relaxation of cardiomyocytes leads to diastolic dysfunction in the left ventricle. Relaxation velocity is regulated in part by intracellular calcium (Ca2+) cycling, and slower outflux of Ca2+ during diastole translates to reduced relaxation velocity of sarcomeres. Sarcomere length transient and intracellular calcium kinetics are integral parts of characterizing the relaxation behavior of the myocardium. However, a classifier tool that can separate normal cells from cells with impaired relaxation using sarcomere length transient and/or calcium kinetics remains to be developed. In this work, we employed nine different classifiers to classify normal and impaired cells, using ex-vivo measurements of sarcomere kinematics and intracellular calcium kinetics data. The cells were isolated from wild-type mice (referred to as normal) and transgenic mice expressing impaired left ventricular relaxation (referred to as impaired). We utilized sarcomere length transient data with a total of n = 126 cells (n = 60 normal cells and n = 66 impaired cells) and intracellular calcium cycling measurements with a total of n = 116 cells (n = 57 normal cells and n = 59 impaired cells) from normal and impaired cardiomyocytes as inputs to machine learning (ML) models for classification. We trained all ML classifiers with cross-validation method separately using both sets of input features, and compared their performance metrics. The performance of classifiers on test data showed that our soft voting classifier outperformed all other individual classifiers on both sets of input features, with 0.94 and 0.95 area under the receiver operating characteristic curves for sarcomere length transient and calcium transient, respectively, while multilayer perceptron achieved comparable scores of 0.93 and 0.95, respectively. However, the performance of decision tree, and extreme gradient boosting was found to be dependent on the set of input features used for training. Our findings highlight the importance of selecting appropriate input features and classifiers for the accurate classification of normal and impaired cells. Layer-wise relevance propagation (LRP) analysis demonstrated that the time to 50% contraction of the sarcomere had the highest relevance score for sarcomere length transient, whereas time to 50% decay of calcium had the highest relevance score for calcium transient input features. Despite the limited dataset, our study demonstrated satisfactory accuracy, suggesting that the algorithm can be used to classify relaxation behavior in cardiomyocytes when the potential relaxation impairment of the cells is unknown.


Assuntos
Cálcio , Sarcômeros , Camundongos , Animais , Contração Miocárdica , Miócitos Cardíacos , Aprendizado de Máquina
7.
Acta Biomater ; 162: 240-253, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963596

RESUMO

The myocardium possesses an intricately designed microarchitecture to produce an optimal cardiac contraction. The contractile behavior of the heart is generated at the sarcomere level and travels across several length scales to manifest as the systolic function at the organ level. While passive myocardial behavior has been studied extensively, the translation of active tension produced at the fiber level to the organ-level function is not well understood. Alterations in cardiac systolic function are often key sequelae in structural heart diseases, such as myocardial infarction and systolic heart failure; thus, characterization of the contractile behavior of the heart across multiple length scales is essential to improve our understanding of mechanisms collectively leading to depressed systolic function. In this study, we present a methodology to characterize the active behavior of left ventricle free wall (LVFW) myocardial tissues in mice. Combined with active tests in papillary muscle fibers and conventional in vivo contractility measurement at the organ level in an animal-specific manner, we establish a multiscale active characterization of the heart from fiber to organ. In addition, we quantified myocardial architecture from histology to shed light on the directionality of the contractility at the tissue level. The LVFW tissue activation-relaxation behavior under isometric conditions was qualitatively similar to that of the papillary muscle fiber bundle. However, the maximum stress developed in the LVFW tissue was an order of magnitude lower than that developed by a fiber bundle, and the time taken for active forces to plateau was 2-3 orders of magnitude longer. Although the LVFW tissue exhibited a slightly stiffer passive response in the circumferential direction, the tissues produced significantly larger active stresses in the longitudinal direction during active testing. Also, contrary to passive viscoelastic stress relaxation, active stresses relaxed faster in the direction with larger peak stresses. The multiscale experimental pipeline presented in this work is expected to provide crucial insight into the contractile adaptation mechanisms of the heart with impaired systolic function. STATEMENT OF SIGNIFICANCE: Heart failure cause significant alterations to the contractile-relaxation behavior of the yocardium. Multiscale characterization of the contractile behavior of the myocardium is essential to advance our understanding of how contractility translates from fiber to organ and to identify the multiscale mechanisms leading to impaired cardiac function. While passive myocardial behavior has been studied extensively, the investigation of tissue-level contractile behavior remains critically scarce in the literature. To the best of our knowledge, our study here is the first to investigate the contractile behavior of the left ventricle at multiple length scales in small animals. Our results indicate that the active myocardial wall is a function of transmural depth and relaxes faster in the direction with larger peak stresses.


Assuntos
Ventrículos do Coração , Coração , Camundongos , Animais , Coração/fisiologia , Miocárdio , Contração Miocárdica , Sístole
8.
Funct Imaging Model Heart ; 13958: 34-43, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37465393

RESUMO

Myocardial infarction (MI) results in cardiac myocyte death and often initiates the formation of a fibrotic scar in the myocardium surrounded by a border zone. Myocyte loss and collagen-rich scar tissue heavily influence the biomechanical behavior of the myocardium which could lead to various cardiac diseases such as systolic heart failure and arrhythmias. Knowledge of how myocyte and collagen micro-architecture changes affect the passive mechanical behavior of the border zone remains limited. Computational modeling provides us with an invaluable tool to identify and study the mechanisms driving the biomechanical remodeling of the myocardium post-MI. We utilized a rodent model of MI and an image-based approach to characterize the three-dimensional (3-D) myocyte and collagen micro-architecture at various timepoints post-MI. Left ventricular free wall (LVFW) samples were obtained from infarcted hearts at 1-week and 4-week post-MI (n = 1 each). Samples were labeled using immunoassays to identify the extracellular matrix (ECM) and myocytes. 3-D reconstructions of the infarct border zone were developed from confocal imaging and meshed to develop high-fidelity micro-anatomically accurate finite element models. We performed a parametric study using these models to investigate the influence of collagen undulation on the passive micromechanical behavior of the myocardium under a diastolic load. Our results suggest that although parametric increases in collagen undulation elevate the strain amount experienced by the ECM in both early- and late-stage MI, the sensitivity of myocytes to such increases is reduced from early to late-stage MI. Our 3-D micro-anatomical modeling holds promise in identifying mechanisms of border zone maladaptation post-MI.

9.
J Mech Behav Biomed Mater ; 142: 105788, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060716

RESUMO

We have previously demonstrated the importance of myofiber-collagen mechanical interactions in modeling the passive mechanical behavior of right ventricle free wall (RVFW) myocardium. To gain deeper insights into these coupling mechanisms, we developed a high-fidelity, micro-anatomically realistic 3D finite element model of right ventricle free wall (RVFW) myocardium by combining high-resolution imaging and supercomputer-based simulations. We first developed a representative tissue element (RTE) model at the sub-tissue scale by specializing the hyperelastic anisotropic structurally-based constitutive relations for myofibers and ECM collagen, and equi-biaxial and non-equibiaxial loading conditions were simulated using the open-source software FEniCS to compute the effective stress-strain response of the RTE. To estimate the model parameters of the RTE model, we first fitted a 'top-down' biaxial stress-strain behavior with our previous structurally based (tissue-scale) model, informed by the measured myofiber and collagen fiber composition and orientation distributions. Next, we employed a multi-scale approach to determine the tissue-level (5 x 5 x 0.7 mm specimen size) RVFW biaxial behavior via 'bottom-up' homogenization of the fitted RTE model, recapitulating the histologically measured myofiber and collagen orientation to the biaxial mechanical data. Our homogenization approach successfully reproduced the tissue-level mechanical behavior of our previous studies in all biaxial deformation modes, suggesting that the 3D micro-anatomical arrangement of myofibers and ECM collagen is indeed a primary mechanism driving myofiber-collagen interactions.


Assuntos
Ventrículos do Coração , Miocárdio , Estresse Mecânico , Miocárdio/patologia , Coração , Colágeno , Fenômenos Biomecânicos
10.
Ann Biomed Eng ; 51(4): 846-863, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36394778

RESUMO

Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure. Despite important advances in understanding LVFW passive remodeling in the setting of MI, heterogeneous remodeling in the LVFW active properties and its relationship to organ-level LV function remain understudied. To address these gaps, we developed high-fidelity finite-element (FE) rodent computational cardiac models (RCCMs) of MI using extensive datasets from MI rat hearts representing the heart remodeling from one-week (1-wk) to four-week (4-wk) post-MI timepoints. The rat-specific models (n = 2 for each timepoint) integrate detailed imaging data of the heart geometry, myocardial fiber architecture, and infarct zone determined using late gadolinium enhancement prior to terminal measurements. The computational models predicted a significantly higher level of active tension in remote myocardium in early post-MI hearts (1-wk post-MI) followed by a return to near the control level in late-stage MI (3- and 4-wk post-MI). The late-stage MI rats showed smaller myofiber ranges in the remote region and in-silico experiments using RCCMs suggested that the smaller fiber helicity is consistent with lower contractile forces needed to meet the measured ejection fractions in late-stage MI. In contrast, in-silico experiments predicted that collagen fiber transmural orientation in the infarct region has little influence on organ-level function. In addition, our MI RCCMs indicated that reduced and potentially positive circumferential strains in the infarct region at end-systole can be used to infer information about the time-varying properties of the infarct region. The detailed description of regional passive and active remodeling patterns can complement and enhance the traditional measures of LV anatomy and function that often lead to a gross and limited assessment of cardiac performance. The translation and implementation of our model in patient-specific organ-level simulations offer to advance the investigation of individualized prognosis and intervention for MI.


Assuntos
Ventrículos do Coração , Infarto do Miocárdio , Ratos , Animais , Meios de Contraste , Roedores , Gadolínio , Miocárdio , Simulação por Computador , Remodelação Ventricular
11.
Funct Imaging Model Heart ; 13958: 74-83, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37671365

RESUMO

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.

12.
Circ Heart Fail ; 16(2): e009768, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748476

RESUMO

BACKGROUND: Global indices of right ventricle (RV) function provide limited insights into mechanisms underlying RV remodeling in pulmonary hypertension (PH). While RV myocardial architectural remodeling has been observed in PH, its effect on RV adaptation is poorly understood. METHODS: Hemodynamic assessments were performed in 2 rodent models of PH. RV free wall myoarchitecture was quantified using generalized Q-space imaging and tractography analyses. Computational models were developed to predict RV wall strains. Data from animal studies were analyzed to determine the correlations between hemodynamic measurements, RV strains, and structural measures. RESULTS: In contrast to the PH rats with severe RV maladaptation, PH rats with mild RV maladaptation showed a decrease in helical range of fiber orientation in the RV free wall (139º versus 97º; P=0.029), preserved global circumferential strain, and exhibited less reduction in right ventricular-pulmonary arterial coupling (0.029 versus 0.017 mm/mm Hg; P=0.037). Helical range correlated positively with coupling (P=0.036) and stroke volume index (P<0.01). Coupling correlated with global circumferential strain (P<0.01) and global radial strain (P<0.01) but not global longitudinal strain. CONCLUSIONS: Data analysis suggests that adaptive RV architectural remodeling could improve RV function in PH. Our findings suggest the need to assess RV architecture within routine screenings of PH patients to improve our understanding of its prognostic and therapeutic significance in PH.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Ratos , Hemodinâmica , Ventrículos do Coração , Adaptação Fisiológica , Função Ventricular Direita , Remodelação Ventricular
13.
Front Physiol ; 13: 878861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586708

RESUMO

The pericardium is a thin connective tissue membrane that surrounds the heart and is an integral regulatory component of cardiopulmonary performance. Pathological growth and remodeling of the right ventricle (RV) stemming from structural heart diseases are thought to include a significant role of the pericardium, but its exact role remains unclear. The objective of this study was to investigate potential biomechanical adaptations of the pericardium in response to pulmonary hypertension and their effects on heart behavior. Integrated computational-experimental modeling of the heart offers a robust platform to achieve this objective. We built upon our recently developed high-fidelity finite-element models of healthy and hypertensive rodent hearts via addition of the pericardial sac. In-silico experiments were performed to investigate changes in pericardium reserve elasticity and their effects on cardiac function in hypertensive hearts. Our results suggest that contractile forces would need to increase in the RV and decrease in the left ventricle (LV) in the hypertensive heart to compensate for reductions in pericardium reserve elasticity. The discrepancies between chamber responses to pericardium addition result, in part, from differences in the impact of pericardium on the RV and LV preload. We further demonstrated the capability of our platform to predict the effect of pericardiectomy on heart function. Consistent with previous results, the effect of pericardiectomy on the chamber pressure-volume loop was the largest in the hypertensive RV. These insights are expected to motivate further computational investigations of the effect of pericardiectomy on cardiac function which remains an important factor in surgical planning of constrictive pericarditis and coronary artery bypass grafting.

14.
Sci Rep ; 12(1): 5433, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361836

RESUMO

In-vivo estimation of mechanical properties of the myocardium is essential for patient-specific diagnosis and prognosis of cardiac disease involving myocardial remodeling, including myocardial infarction and heart failure with preserved ejection fraction. Current approaches use time-consuming finite-element (FE) inverse methods that involve reconstructing and meshing the heart geometry, imposing measured loading, and conducting computationally expensive iterative FE simulations. In this paper, we propose a machine learning (ML) model that feasibly and accurately predicts passive myocardial properties directly from select geometric, architectural, and hemodynamic measures, thus bypassing exhaustive steps commonly required in cardiac FE inverse problems. Geometric and fiber-orientation features were chosen to be readily obtainable from standard cardiac imaging protocols. The end-diastolic pressure-volume relationship (EDPVR), which can be obtained using a single-point pressure-volume measurement, was used as a hemodynamic (loading) feature. A comprehensive ML training dataset in the geometry-architecture-loading space was generated, including a wide variety of partially synthesized rodent heart geometry and myofiber helicity possibilities, and a broad range of EDPVRs obtained using forward FE simulations. Latin hypercube sampling was used to create 2500 examples for training, validation, and testing. A multi-layer feed-forward neural network (MFNN) was used as a deep learning agent to train the ML model. The model showed excellent performance in predicting stiffness parameters [Formula: see text] and [Formula: see text] associated with fiber direction ([Formula: see text] and [Formula: see text]). After conducting permutation feature importance analysis, the ML performance further improved for [Formula: see text] ([Formula: see text]), and the left ventricular volume and endocardial area were found to be the most critical geometric features for accurate predictions. The ML model predictions were evaluated further in two cases: (i) rat-specific stiffness data measured using ex-vivo mechanical testing, and (ii) patient-specific estimation using FE inverse modeling. Excellent agreements with ML predictions were found for both cases. The trained ML model offers a feasible technology to estimate patient-specific myocardial properties, thus, bridging the gap between EDPVR, as a confounded organ-level metric for tissue stiffness, and intrinsic tissue-level properties. These properties provide incremental information relative to traditional organ-level indices for cardiac function, improving the clinical assessment and prognosis of cardiac diseases.


Assuntos
Insuficiência Cardíaca , Miocárdio , Animais , Coração/diagnóstico por imagem , Ventrículos do Coração , Humanos , Aprendizado de Máquina , Ratos
15.
Funct Imaging Model Heart ; 12738: 168-177, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34368813

RESUMO

Pulmonary arterial hypertension (PAH) imposes a pressure overload on the right ventricle (RV), leading to myofiber hypertrophy and remodeling of the extracellular collagen fiber network. While the macroscopic behavior of healthy and post-PAH RV free wall (RVFW) tissue has been studied previously, the mechanical microenvironment that drives remodeling events in the myofibers and the extracellular matrix (ECM) remains largely unexplored. We hypothesize that multiscale computational modeling of the heart, linking cellular-scale events to tissue-scale behavior, can improve our understanding of cardiac remodeling and better identify therapeutic targets. We have developed a high-fidelity microanatomically realistic model of ventricular myocardium, combining confocal microscopy techniques, soft tissue mechanics, and finite element modeling. We match our microanatomical model to the tissue-scale mechanical response of previous studies on biaxial properties of RVFW and examine the local myofiber-ECM interactions to study fiber-specific mechanics at the scale of individual myofibers. Through this approach, we determine that the interactions occurring at the tissue scale can be accounted for by accurately representing the geometry of the myofiber-collagen arrangement at the micro scale. Ultimately, models such as these can be used to link cellular-level adaptations with organ-level adaptations to lead to the development of patient-specific treatments for PAH.

16.
Ann Biomed Eng ; 47(1): 138-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30264263

RESUMO

Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement via the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental-computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.


Assuntos
Simulação por Computador , Hipertensão Pulmonar , Modelos Cardiovasculares , Função Ventricular Direita , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa