Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neuroimage ; 158: 112-125, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28669916

RESUMO

Manganese in its divalent state (Mn2+) has features that make it a unique tool for tracing neuronal pathways. It is taken up and transported by neurons in an activity-dependent manner and it can cross synapses. It also acts as a contrast agent for magnetic resonance imaging (MRI) enabling visualization of neuronal tracts. However, due to the limited sensitivity of MRI systems relatively high Mn2+ doses are required. This is undesirable, especially in long-term studies, because of the known toxicity of the metal. In order to overcome this limitation, we propose 52Mn as a positron emission tomography (PET) neuronal tract tracer. We used 52Mn for imaging dopaminergic pathways after a unilateral injection into the ventral tegmental area (VTA), as well as the striatonigral pathway after an injection into the dorsal striatum (STR) in rats. Furthermore, we tested potentially noxious effects of the radioactivity dose with a behavioral test and histological staining. 24 h after 52Mn administration, the neuronal tracts were clearly visible in PET images and statistical analysis confirmed the observed distribution of the tracer. We noticed a behavioral impairment in some animals treated with 170 kBq of 52Mn, most likely caused by dysfunction of dopaminergic cells. Moreover, there was a substantial DNA damage in the brain tissue after applying 150 kBq of the tracer. However, all those effects were completely eliminated by reducing the 52Mn dose to 20-30 kBq. Crucially, the reduced dose was still sufficient for PET imaging.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Manganês/toxicidade , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/toxicidade , Animais , Masculino , Radioisótopos/toxicidade , Ratos
2.
Radiother Oncol ; : 110592, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427933

RESUMO

PURPOSE: Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time. METHODS AND MATERIALS: Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreERT2-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time. We combine this system with multiphoton microscopy, flow cytometry, and immunofluorescence to characterize the role of hypoxic cells in tumor relapse after irradiation in H1299 tumor spheroids and in vivo xenografts. RESULTS: We validate the reporter in monolayer cultures and we show that tagged cells colocalize in spheroids and human tumor xenografts with the hypoxic marker pimonidazole. We found that irradiation of H1299-HIFcreUnaG spheroids leads to preferential outgrowth of cells from the hypoxic core. Similarly, in xenografts tumors, although initially UnaG-positive-cells coincide with pimonidazole-positive tumor areas and they are merely quiescent, upon Irradiation UnaG-positive cells enrich in regrowing tumors and are mainly proliferative. CONCLUSIONS: Collectively, our data provide clear evidence that the hypoxic cells drive tumor relapse after irradiation.

3.
Radiother Oncol ; 159: 119-125, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775712

RESUMO

AIM: To assess radiation response using γH2AX assay in surgical specimens from glioblastoma (GB) patients and their corresponding primary gliosphere culture. To test the hypothesis that gliospheres (stem cell enriched) are more resistant than specimens (bulky cell dominated) but that the interpatient heterogeneity is similar. MATERIAL AND METHODS: Ten pairs of specimens and corresponding gliospheres derived from patients with IDH-wildtype GB were studied. Specimens and gliospheres were irradiated with graded doses and after 24 h the number of residual γH2AX foci was counted. RESULTS: Gliospheres showed a higher Nestin expression than specimens and exhibited two different phenotypes: free floating (n = 7) and attached (n = 3). Slope analysis revealed an interpatient heterogeneity with values between 0.15 and 1.30 residual γH2AX foci/Gy. Free-floating spheres were more resistant than their parental specimens (median slope 0.13 foci/Gy versus 0.53) as well as than the attached spheres (2.14). The slopes of free floating spheres did not correlate with their corresponding specimens while a trend for a positive correlation was found for the attached spheres and the respective specimens. Association with MGMT did not reach statistical significance. CONCLUSION: Consistent with the clinical phenotype and our previous experiments, GB specimens show low radiation sensitivity. Stem-cell enriched free-floating gliospheres were more resistant than specimens supporting the concept of radioresistance in stem cell-like cells. The lack of correlation between specimens and their respective gliosphere cultures needs validation and may have a profound impact on future translational studies using γH2AX as a potential biomarker for personalized radiation therapy.


Assuntos
Glioblastoma , Histonas , Técnicas de Cultura de Células , Reparo do DNA , Relação Dose-Resposta à Radiação , Glioblastoma/radioterapia , Histonas/metabolismo , Humanos , Células-Tronco
4.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806417

RESUMO

Most Cyclin-dependent kinases (Cdks) are redundant for normal cell division. Here we tested whether these redundancies are maintained during cell cycle recovery after a DNA damage-induced arrest in G1. Using non-transformed RPE-1 cells, we find that while Cdk4 and Cdk6 act redundantly during normal S-phase entry, they both become essential for S-phase entry after DNA damage in G1. We show that this is due to a greater overall dependency for Cdk4/6 activity, rather than to independent functions of either kinase. In addition, we show that inactivation of pocket proteins is sufficient to overcome the inhibitory effects of complete Cdk4/6 inhibition in otherwise unperturbed cells, but that this cannot revert the effects of Cdk4/6 inhibition in DNA damaged cultures. Indeed, we could confirm that, in addition to inactivation of pocket proteins, Cdh1-dependent anaphase-promoting complex/cyclosome (APC/CCdh1) activity needs to be inhibited to promote S-phase entry in damaged cultures. Collectively, our data indicate that DNA damage in G1 creates a unique situation where high levels of Cdk4/6 activity are required to inactivate pocket proteins and APC/CCdh1 to promote the transition from G1 to S phase.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Fase G1/fisiologia , Humanos , Transfecção
5.
Cells ; 10(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801903

RESUMO

Double strand breaks (DSBs) are highly toxic to a cell, a property that is exploited in radiation therapy. A critical component for the damage induction is cellular oxygen, making hypoxic tumor areas refractory to the efficacy of radiation treatment. During a fractionated radiation regimen, these hypoxic areas can be re-oxygenated. Nonetheless, hypoxia still constitutes a negative prognostic factor for the patient's outcome. We hypothesized that this might be attributed to specific hypoxia-induced cellular traits that are maintained upon reoxygenation. Here, we show that reoxygenation of hypoxic non-transformed RPE-1 cells fully restored induction of DSBs but the cells remain radioresistant as a consequence of hypoxia-induced quiescence. With the use of the cell cycle indicators (FUCCI), cell cycle-specific radiation sensitivity, the cell cycle phase duration with live cell imaging, and single cell tracing were assessed. We observed that RPE-1 cells experience a longer G1 phase under hypoxia and retain a large fraction of cells that are non-cycling. Expression of HPV oncoprotein E7 prevents hypoxia-induced quiescence and abolishes the radioprotective effect. In line with this, HPV-negative cancer cell lines retain radioresistance, while HPV-positive cancer cell lines are radiosensitized upon reoxygenation. Quiescence induction in hypoxia and its HPV-driven prevention was observed in 3D multicellular spheroids. Collectively, we identify a new hypoxia-dependent radioprotective phenotype due to hypoxia-induced quiescence that accounts for a global decrease in radiosensitivity that can be retained upon reoxygenation and is absent in cells expressing oncoprotein E7.


Assuntos
Hipóxia Celular/fisiologia , Radiação Ionizante , Linhagem Celular Tumoral , Humanos
6.
Cell Rep ; 37(7): 110013, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788605

RESUMO

Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1-6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities.


Assuntos
Linfócitos do Interstício Tumoral/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiotaxia/fisiologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Diester Fosfórico Hidrolases/fisiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
7.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003386

RESUMO

The multifunctional protein Y-box binding protein-1 (YB-1) regulates all the so far described cancer hallmarks including cell proliferation and survival. The MAPK/ERK and PI3K/Akt pathways are also the major pathways involved in cell growth, proliferation, and survival, and are the frequently hyperactivated pathways in human cancers. A gain of function mutation in KRAS mainly leads to the constitutive activation of the MAPK pathway, while the activation of the PI3K/Akt pathway occurs either through the loss of PTEN or a gain of function mutation of the catalytic subunit alpha of PI3K (PIK3CA). In this study, we investigated the underlying signaling pathway involved in YB-1 phosphorylation at serine 102 (S102) in KRAS(G13D)-mutated triple-negative breast cancer (TNBC) MDA-MB-231 cells versus PIK3CA(H1047R)/PTEN(E307K) mutated TNBC MDA-MB-453 cells. Our data demonstrate that S102 phosphorylation of YB-1 in KRAS-mutated cells is mainly dependent on the MAPK/ERK pathway, while in PIK3CA/PTEN-mutated cells, YB-1 S102 phosphorylation is entirely dependent on the PI3K/Akt pathway. Independent of the individual dominant pathway regulating YB-1 phosphorylation, dual targeting of MEK and PI3K efficiently inhibited YB-1 phosphorylation and blocked cell proliferation. This represents functional crosstalk between the two pathways. Our data obtained from the experiments, applying pharmacological inhibitors and genetic approaches, shows that YB-1 is a key player in cell proliferation, clonogenic activity, and tumor growth of TNBC cells through the MAPK and PI3K pathways. Therefore, dual inhibition of these two pathways or single targeting of YB-1 may be an effective strategy to treat TNBC.

8.
Radiother Oncol ; 90(2): 257-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19038467

RESUMO

PURPOSE: Squamous cell carcinomas (SCCs) are characterized by moderate radiosensitivity. We have established the human head & neck SCC cell line SKX, which shows an exceptionally high radiosensitivity. It was the aim of this study to understand the underlying mechanisms. MATERIALS & METHODS: Experiments were performed with SKX and FaDu, the latter taken as a control of moderate radiosensitivity. Cell lines were grown as xenografts as well as cell cultures. For xenografts, radiosensitivity was determined via local tumour control assay, and for cell cultures using colony assay. For cell cultures, apoptosis was determined by Annexin V staining and G1-arrest by BrdU labelling. Double-strand breaks (DSBs) were detected by both constant-field gel electrophoresis (CFGE) and gammaH2AX-foci technique; DSB rejoining was also assessed by in vitro rejoining assay; chromosomal damage was determined by G01-assay. RESULTS: Compared to FaDu, SKX cells are extremely radiosensitive as found for both xenografts (TCD(50) for 10 fractions 46.0Gy [95% C.I.: 39; 54 Gy] vs. 18.9 Gy [95% C.I.: 13; 25Gy]) and cell cultures (D(0.01); 7.1 vs. 3.5Gy). Both cell lines showed neither radiation-induced apoptosis nor radiation-induced permanent G1-arrest. For DSBs, there was no difference in the induction but for repair with SKX cells showing a higher level of both, slowly repaired DSBs and residual DSBs. The in vitro DSB repair assay revealed that SKX cells are defective in nonhomologous endjoining (NHEJ), and that more than 40% of DSBs are rejoined by single-strand annealing (SSA). SKX cells also depicted a two-fold higher number of lethal chromosomal aberrations when compared to FaDu cells. CONCLUSIONS: The extreme radiosensitivity of the SCC SKX seen both in vivo and in vitro can be ascribed to a reduced DNA double-strand break repair, resulting from a defect in NHEJ. This defect might be due to preferred usage of other pathways, such as SSA, which prevents efficient endjoining.


Assuntos
Carcinoma de Células Escamosas/genética , Quebras de DNA de Cadeia Dupla , Tolerância a Radiação/genética , Animais , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/radioterapia , Aberrações Cromossômicas/efeitos da radiação , Reparo do DNA/efeitos da radiação , Feminino , Fase G1/efeitos da radiação , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Dosagem Radioterapêutica , Células Tumorais Cultivadas/efeitos da radiação
9.
Radiother Oncol ; 126(1): 125-131, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061496

RESUMO

INTRODUCTION: Preclinical and clinical data suggest that the chemokine pathway governed by SDF-1 and CXCR4 contributes to a resistant phenotype. This retrospective biomarker study aims to explore the specific prognostic value of SDF-1 and CXCR4 expression in locally advanced head and neck squamous cell carcinomas (HNSCC) treated with primary radiochemotherapy (RT-CT). MATERIAL AND METHODS: Biopsies from 141 HNSCC tumours of the oral cavity, oropharynx and hypopharynx were evaluated for SDF-1 and CXCR4 expression by immunofluorescence. SDF-1 and CXCR4 expression was correlated with clinico-pathological characteristics and outcome after RT-CT. RESULTS: Patients with tumours exhibiting overexpression of intracellular SDF-1 and CXCR4 have a higher risk for loco-regional relapse and a worse overall survival after RT-CT (multivariate analysis, hazard ratio 2.33, CI [1.18-4.62], p = 0.02 and hazard ratio 2.02, CI [1.13-3.59], p = 0.02, respectively). Similar results were observed when only the subgroup of HPV DNA negative patients were analysed (hazard ratio 2.23 and 2.16, p = 0.02 and p = 0.01, respectively). CONCLUSIONS: Our data support the importance of SDF-1 and CXCR4 expression for loco-regional control and overall survival in HNSCC after primary radiochemotherapy. Prospective multivariate validation and further studies into CXCR4 inhibition to overcome radiation resistance are warranted.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Quimiocina CXCL12/biossíntese , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Receptores CXCR4/biossíntese , Idoso , Biomarcadores Tumorais/biossíntese , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Quimiorradioterapia , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taxa de Sobrevida
10.
Clin Transl Radiat Oncol ; 5: 12-19, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594212

RESUMO

PURPOSE: To assess the impact of hypoxia exposure on cellular radiation sensitivity and survival of tumor cells with diverse intrinsic radiation sensitivity under normoxic conditions. MATERIALS AND METHODS: Three squamous cell carcinoma (SCC) cell lines, with pronounced differences in radiation sensitivity, were exposed to hypoxia prior, during or post irradiation. Cells were seeded in parallel for colony formation assay (CFA) and stained for γH2AX foci or processed for western blot analysis. RESULTS: Hypoxia during irradiation led to increased cellular survival and reduced amount of residual γH2AX foci in all the cell lines with similar oxygen enhancement ratios (OER SKX: 2.31, FaDu: 2.44, UT-SCC5: 2.32), while post-irradiation hypoxia did not alter CFA nor residual γH2AX foci. Interestingly, prolonged exposure to hypoxia prior to irradiation resulted in differential outcome, assessed as Hypoxia modifying factor (HMF) namely radiosensitization (SKX HMF: 0.76), radioresistance (FaDu HMF: 1.54) and no effect (UT SCC-5 HMF: 1.1). Notably, radiosensitization was observed in the ATM-deficient SKX cell line while UT SCC-5 and to a lesser extent also FaDu cells showed radiation- and hypoxia-induced upregulation of ATM phosphorylation. Across all the cell lines Rad51 was downregulated whereas phosphor-DNA-PKcs was enhanced under hypoxia for FaDu and UTSCC-5 and was delayed in the SKX cell line. CONCLUSION: We herein report a key role of ATM in the cellular fitness of cells exposed to prolonged moderate hypoxia prior to irradiation. While DNA damage response post-irradiation seem to be mainly driven by non-homologous end joining repair pathway in these conditions, our data suggest an important role for ATM kinase in hypoxia-driven modification of radiation response.

11.
Radiother Oncol ; 124(3): 386-394, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28919005

RESUMO

INTRODUCTION: The aim of the study is to assess inter-patient and intra-patient heterogeneity in tumour cell radiosensitivity using the ex vivo γH2AX assay in prostate cancer specimens. METHODS: Excised specimens from untreated prostate cancer patients were cultivated 24h in media, irradiated ex vivo and fixed after 24h. Residual γH2AX foci were counted and the slope of the dose response was calculated. Intra-patient heterogeneity was studied from three to seven different biopsies. RESULTS: In pathology-confirmed tumour samples from 21 patients the slope of residual γH2AX foci and radiation dose showed a substantial heterogeneity ranging from 0.82 to 3.17 foci/Gy. No correlation was observed between the slope values and the Gleason score (p=0.37), prostate specific antigen (p=0.48) and tumour stage (p=0.89). ANOVA indicated that only in 1 out of 9 patients, biopsies from different tumour locations yielded statistically significant differences. Variance component analysis indicated higher inter-patient than intra-patient variability. Bootstrap simulation study demonstrated that one biopsy is sufficient to estimate the mean value of residual γH2AX per dose level and account for intra-patient heterogeneity. CONCLUSIONS: In prostate cancer inter-patient heterogeneity in tumour cell radiation sensitivity is pronounced and higher than intra-patient heterogeneity supporting the further development of the γH2AX ex vivo assay as a biomarker for individualized treatment.


Assuntos
Histonas/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Idoso , Relação Dose-Resposta à Radiação , Humanos , Individualidade , Calicreínas/metabolismo , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/cirurgia , Tolerância a Radiação
12.
Clin Transl Radiat Oncol ; 5: 28-36, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594214

RESUMO

INTRODUCTION: Outcome after postoperative radiochemotherapy (RT-CT) for patients with advanced head and neck squamous cell carcinomas (HNSCC) remains unsatisfactory, especially among those with HPV negative tumours. Therefore, new biomarkers are needed to further define subgroups for individualised therapeutic approaches. Preclinical and first clinical observations showed that the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12) play an important role in tumour cell proliferation, survival, cancer progression, metastasis and treatment resistance. However, the data on the prognostic value of SDF-1/CXCR4 expression for HNSCC are conflicting. The aim of our hypothesis-generating study was to retrospectively explore the prognostic potential of SDF-1/CXCR4 in a well-defined cohort of HNSCC patients collected within the multicenter biomarker study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). MATERIAL AND METHODS: Patients with stage III and IVA HNSCC of the oral cavity, oropharynx and hypopharynx were treated with resection and adjuvant radiotherapy (RT) with ≥60 Gy and concurrent cisplatin-based chemotherapy (CT). Tissue micro-arrays (TMAs) from a total of 221 patients were generated from surgical specimens, 201 evaluated for the SDF-1 and CXCR4 expression by immunofluorescence and correlated with clinico-pathological and outcome data. RESULTS: In univariate and multivariate analyses intracellular SDF-1 expression was associated with lower loco-regional control (LRC) in the entire patient group as well as in the HPV16 DNA negative subgroup. CXCR4 expression showed a trend for lower LRC in the univariate analysis which was not confirmed in the multivariate analysis. Neither for SDF-1 nor CXCR4 expression associations with distant metastasis free or overall survival were found. CONCLUSIONS: Our exploratory data support the hypothesis that overexpression of intracellular SDF-1 is an independent negative prognostic biomarker for LRC after postoperative RT-CT in high-risk HNSCC. Prospective validation is warranted and further exploration of SDF-1/CXCR4 as a potential therapeutic target to overcome treatment resistance in HNSCC appears promising.

13.
Radiother Oncol ; 116(3): 473-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25866027

RESUMO

PURPOSE: To establish a clinically applicable protocol for quantification of residual γH2AX foci in ex vivo irradiated tumour samples and to apply this method in a proof-of-concept feasibility study to patient-derived tumour specimens. MATERIAL AND METHODS: Evaluation of γH2AX foci formation and disappearance in excised FaDu tumour specimens after (a) different incubation times in culture medium, 4Gy irradiation and fixation after 24h (cell recovery), (b) 10h medium incubation, 4Gy irradiation and fixation after various time points (double strand break repair kinetics), and (c) 10h medium incubation, irradiation with graded single radiation doses and fixation after 24h (dose-response). The optimised protocol was applied to patient-derived samples of seminoma, prostate cancer and glioblastoma multiforme. RESULTS: Post excision or biopsy, tumour tissues showed stable radiation-induced γH2AX foci values in oxic cells after >6h of recovery in medium. Kinetics of foci disappearance indicated a plateau of residual foci after >12h following ex vivo irradiation. Fitting the dose-response of residual γH2AX foci yielded slopes comparable with in situ irradiation of FaDu tumours. Significant differences in the slopes of ex vivo irradiated patient-derived tumour samples were found. CONCLUSION: A novel clinically applicable method to quantify residual γH2AX foci in ex vivo irradiated tumour samples was established. The first clinical results suggest that this method allows to distinguish between radiosensitive and radioresistant tumour types. These findings support further translational evaluation of this assay to individualise radiation therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Histonas/metabolismo , Neoplasias/genética , Tolerância a Radiação/genética , Animais , Bioensaio , Reparo do DNA/efeitos da radiação , Estudos de Viabilidade , Xenoenxertos/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos Nus , Transplante de Neoplasias , Neoplasias/radioterapia , Transplante Heterólogo
14.
Radiother Oncol ; 116(3): 480-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26297183

RESUMO

PURPOSE: To apply our previously published residual ex vivo γH2AX foci method to patient-derived tumour specimens covering a spectrum of tumour-types with known differences in radiation response. In addition, the data were used to simulate different experimental scenarios to simplify the method. MATERIALS AND METHODS: Evaluation of residual γH2AX foci in well-oxygenated tumour areas of ex vivo irradiated patient-derived tumour specimens with graded single doses was performed. Immediately after surgical resection, the samples were cultivated for 24h in culture medium prior to irradiation and fixed 24h post-irradiation for γH2AX foci evaluation. Specimens from a total of 25 patients (including 7 previously published) with 10 different tumour types were included. RESULTS: Linear dose response of residual γH2AX foci was observed in all specimens with highly variable slopes among different tumour types ranging from 0.69 (95% CI: 1.14-0.24) to 3.26 (95% CI: 4.13-2.62) for chondrosarcomas (radioresistant) and classical seminomas (radiosensitive) respectively. Simulations suggest that omitting dose levels might simplify the assay without compromising robustness. CONCLUSION: Here we confirm clinical feasibility of the assay. The slopes of the residual foci number are well in line with the expected differences in radio-responsiveness of different tumour types implying that intrinsic radiation sensitivity contributes to tumour radiation response. Thus, this assay has a promising potential for individualized radiation therapy and prospective validation is warranted.


Assuntos
Histonas/metabolismo , Neoplasias/radioterapia , Análise de Variância , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Estudos de Viabilidade , Feminino , Imunofluorescência , Humanos , Masculino , Estudos Prospectivos , Tolerância a Radiação
15.
Radiother Oncol ; 100(1): 137-44, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21821302

RESUMO

PURPOSE: Micromilieu-dependent quantification of γH2AX after irradiation in vivo and correlation with local tumour control. MATERIALS AND METHODS: Local tumour control was evaluated after irradiation of FaDu and SKX xenografts with ambient single doses. γH2AX foci were quantified in perfused and unperfused regions after different irradiation doses and at different time points. RESULTS: The TCD(50) of FaDu was 2-times higher compared to SKX (28.0Gy [95% C.I. 24.6; 31.3Gy] for FaDu; 14.9Gy [10.9; 18.9] for SKX, p<0.001). The induction of foci did not differ between the tumour models. Residual foci were twice higher in perfused SKX regions compared to FaDu, no difference was observed in the non-perfused region between both tumour models. The number of residual foci increased with a 2-times higher slope in perfused SKX-regions compared to FaDu, while no difference was detected in unperfused regions. Already within the perfused regions, this slope decreased with distance from perfused vessels. CONCLUSION: The dose-response of residual γH2AX foci is highly dependent on tumour cell oxygenation in well perfused areas. This dependence decreases further away from tumour vessels. Only γH2AX evaluation in perfused tumour areas can distinguish between the different radiocurability of the two tumour models.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Quebras de DNA de Cadeia Dupla , Neoplasias Hipofaríngeas/radioterapia , Tolerância a Radiação , Idoso , Idoso de 80 Anos ou mais , Animais , Bromodesoxiuridina/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Feminino , Histonas/análise , Humanos , Neoplasias Hipofaríngeas/irrigação sanguínea , Neoplasias Hipofaríngeas/genética , Masculino , Camundongos
16.
Int J Radiat Biol ; 85(11): 1032-41, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19895280

RESUMO

PURPOSE: To assess the potential of using the residual phosphorylation of histone H2AX (gammaH2AX) after irradiation as a marker of radiosensitivity in vitro. MATERIAL AND METHODS: Confluent cell cultures of FaDu and SKX human squamous cell carcinoma lines were irradiated with graded single doses. Twenty-four hours after irradiation cells were seeded for standard colony forming assay (CFA). In parallel, staining for gammaH2AX was performed to visualise the residual foci. RESULTS: In the CFA, FaDu showed a higher radioresistance than SKX. After analysis of the residual foci data, we constructed 'predicted' survival curves using two different methods. First, the proportion of nuclei with <3 foci was found to correlate closely with the observed surviving fraction (SF) in FaDu, with a slight overestimation of the true SF in SKX. Second, there was a strong linear correlation of the mean number of residual foci and observed -lnSF. Based on regression analysis, we calculated the SF for both cell lines based on the mean number of residual gammaH2AX foci. This second approach again led to a good correlation of predicted and observed SF values in FaDu and a (slight) overestimation in SKX. CONCLUSION: In the two cell lines investigated the mean number of residual foci of gammaH2AX can be used to predict differences in the radiation dose response relationship in vitro.


Assuntos
Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , DNA de Neoplasias/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Imuno-Histoquímica , Tolerância a Radiação , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa