Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775321

RESUMO

Trypanosoma species are responsible for chronic and systemic infections in millions of people around the world, compromising life quality, and family and government budgets. This group of diseases is classified as neglected and causes thousands of deaths each year. In the present study, the trypanocidal effect of a set of 12 ester derivatives of the p-coumaric acid was tested. Of the test derivatives, pentyl p-coumarate (7) (5.16 ± 1.28 µM; 61.63 ± 28.59 µM) presented the best respective trypanocidal activities against both epimastigote and trypomastigote forms. Flow cytometry analysis revealed an increase in the percentage of 7-AAD labeled cells, an increase in reactive oxygen species, and a loss of mitochondrial membrane potential; indicating cell death by necrosis. This mechanism was confirmed by scanning electron microscopy, noting the loss of cellular integrity. Molecular docking data indicated that of the chemical compounds tested, compound 7 potentially acts through two mechanisms of action, whether by links with aldo-keto reductases (AKR) or by comprising cruzain (CZ) which is one of the key Trypanosoma cruzi development enzymes. The results indicate that for both enzymes, van der Waals interactions between ligand and receptors favor binding and hydrophobic interactions with the phenolic and aliphatic parts of the ligand. The study demonstrates that p-coumarate derivatives are promising molecules for developing new prototypes with antiprotozoal activity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Ácidos Cumáricos/farmacologia , Propionatos/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Antioxidantes/química , Morte Celular , Células Cultivadas , Ácidos Cumáricos/química , Macaca mulatta , Potencial da Membrana Mitocondrial , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/química , Tripanossomíase/parasitologia
2.
PLoS One ; 11(3): e0151029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974665

RESUMO

Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.


Assuntos
Venenos de Crotalídeos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico/biossíntese , Viperidae , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa