Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(4): 1491-1501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633623

RESUMO

Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Ácidos Graxos/metabolismo , Leveduras/metabolismo , Biocombustíveis , Lipase/metabolismo , Biomassa , Triglicerídeos/metabolismo
2.
J Fungi (Basel) ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38132766

RESUMO

Microorganisms are an important component of global biodiversity and play an important role in plant growth and development and the protection of host plants from various biotic and abiotic stresses. However, little is known about the identities and communities of endophytic fungi inhabiting cultivated medicinal plants in the farmland ecosystem. The diversity and community composition of the endophytic fungi of cultivated medicinal plants in different hosts, tissue niches, and seasonal effects in the farmland of Northern China were examined using the next-generation sequencing technique. In addition, the ecological functions of the endophytic fungal communities were investigated by combining the sequence classification information and fungal taxonomic function annotation. A total of 1025 operational taxonomic units (OTUs) of endophytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Pleosporales. Host factors (species identities and tissue niches) and season had significant effects on the community composition of endophytic fungi, and endophytic fungi assembly was shaped more strongly by host than by season. In summer, endophytic fungal diversity was higher in the root than in the leaf, whereas opposite trends were observed in winter. Network analysis showed that network connectivity was more complex in the leaf than in the root, and the interspecific relationship between endophytic fungal OTUs in the network structure was mainly positive rather than negative. The functional predications of fungi revealed that the pathotrophic types of endophytic fungi decreased and the saprotrophic types increased from summer to winter in the root, while both pathotrophic and saprotrophic types of endophytic fungi increased in the leaf. This study improves our understanding of the community composition and ecological distribution of endophytic fungi inhabiting scattered niches in the farmland ecosystem. In addition, the study provides insight into the biodiversity assessment and management of cultivated medicinal plants.

3.
Plant Sci ; 322: 111349, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35709981

RESUMO

Promoting both root growth and defense is conducive to the production of potatoes (Solanum tuberosum L.), while the role of elicitors in this topic hasn't been fully understood. To investigate the effect of Riclinoctaose (RiOc) on root growth and defense, potato tissue cuttings were cultivated with different concentration of RiOc (0, 50, 200 mg/L) for 5 weeks and changes in root morphology, transcription, enzymatic and metabolomic profiles were monitored over time. The results indicated that RiOc triggered the salicylic acid (SA)-mediated defense response and facilitated the growth of adventitious and lateral roots in a dose- and time-dependent manner. MPK3/MPK6, SA- and auxin-signaling pathways and transcription factors such as WUS, SCR and GRAS4/GRAS9 participated in this process. Moreover, the 1H NMR based metabolome profiling demonstrated that potato roots altered the primary metabolism to respond to the RiOc elicitation and efficiency in production and allocation of defense and growth-related metabolites was improved. After 5-week treatment, the level of glucose, N-acetylglucosamine, glutamine, asparagine, isoleucine, valine, 3-hydroxyisovalerate and ferulate increased, while acetate, acetoacetate, fucose, and 2-hydroxyphenylacetate declined. In conclusion, RiOc played dual roles in activating the SA-mediated defense response and in promoting growth of potato roots by inducing changes in root transcription and metabolism.


Assuntos
Solanum tuberosum , Carboidratos , Regulação da Expressão Gênica de Plantas , Metaboloma , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo , Solanum tuberosum/metabolismo
4.
Int J Biol Macromol ; 223(Pt A): 57-66, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36347363

RESUMO

Many polysaccharides produced by Paenibacillus spp. have attractive properties, such as rheological modification and immunomodulation. However, properties of P. edaphicus polysaccharides are not understood sufficiently. Here, the polysaccharide (PUM) was obtained from P. edaphicus strain UJ1 by batch fermentation, and the chemical characteristics, rheological and anti-inflammatory properties of PUM and its sulfate derivative (PUM-S) were investigated. The results indicated that PUM was a typical shear-thinning biopolymer with an estimated weight average molecular weight of 2.45 × 107 Da. PUM molecule consisted of D-Man, D-GlcA, D-Glc, D-Gal, and L-Fuc with the molar ratio of 3.00:1.07:3.21:0.81:0.76. It had the backbone â†’ 3)-ß-D-Man-(1 â†’ 3)-ß-D-Glc-(1 â†’ 3)-ß-D-Man-(1 â†’ 3)ß-D-Glc-(1 â†’ 4)-ß-D-GlcA-(1 â†’ 3)-ß-D-Man-(1 â†’ and two side chains, namely, pyruvoyl-Glc-(1→ and ß-L-Fuc-(1 â†’ 3)-ß-D-Gal-(1→. Moreover, PUM-S was prepared by SO3-pyridine method and had the weight average molecular weight of 1.42 × 105 Da. The bioactivity of PUM and PUM-S was analyzed in vitro in RAW 264.7 cells. The results indicated that both PUM and PUM-S facilitated cell proliferation at 50-500 µg/mL. Besides, PUM-S showed potential anti-inflammatory effect in the LPS-induced cells. According to transcription and molecular dynamics analyses, PUM-S expressed its activity probably by interacting with the Toll-like receptor 4. In general, P. edaphicus produced a polysaccharide with new chemical structure and promising rheological and bioactive properties.


Assuntos
Paenibacillus , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Peso Molecular , Reologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa