Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121289

RESUMO

Osteoclast differentiation and function are crucial for maintaining bone homeostasis and preserving skeletal integrity. N6-methyladenosine (m6A) is an abundant mRNA modification that has recently been shown to be important in regulating cell lineage differentiation. Nevertheless, the effect of m6A on osteoclast differentiation remains unknown. In the present study, we observed that the m6A level and methyltransferase METTL3 expression increased during osteoclast differentiation. Mettl3 knockdown resulted in an increased size but a decreased bone-resorbing ability of osteoclasts. The expression of osteoclast-specific genes (Nfatc1, c-Fos, Ctsk, Acp5 and Dcstamp) was inhibited by Mettl3 depletion, while the expression of the cellular fusion-specific gene Atp6v0d2 was upregulated. Mechanistically, Mettl3 knockdown elevated the mRNA stability of Atp6v0d2 and the same result was obtained when the m6A-binding protein YTHDF2 was silenced. Moreover, the phosphorylation levels of key molecules in the MAPK, NF-κB and PI3K-AKT signaling pathways were reduced upon Mettl3 deficiency. Depletion of Mettl3 maintained the retention of Traf6 mRNA in the nucleus and reduced the protein levels of TRAF6. Taken together, our data suggest that METTL3 regulates osteoclast differentiation and function through different mechanisms involving Atp6v0d2 mRNA degradation mediated by YTHDF2 and Traf6 mRNA nuclear export. These findings elucidate the molecular basis of RNA epigenetic regulation in osteoclast development.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Núcleo Celular/metabolismo , Metiltransferases/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Estabilidade de RNA/genética , Transporte Ativo do Núcleo Celular , Adenosina/metabolismo , Animais , Reabsorção Óssea/patologia , Proliferação de Células , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Cell Tissue Res ; 376(3): 413-423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30707290

RESUMO

Dental caries is a chronic, infectious, and destructive disease that allows bacteria to break into the dental pulp tissue. As caries-related bacteria invade the human dentinal tubules, odontoblasts are the first line of dental pulp that trigger the initial inflammatory and immune responses. DNA methylation is a key epigenetic modification that plays a fundamental role in gene transcription, and its role in inflammation-related diseases has recently attracted attention. However, whether DNA methylation regulates the inflammatory response of human odontoblasts is still unknown. In the present study, we investigated the expression of DNA methyltransferase (DNMT)-1 in lipoteichoic acid (LTA)-stimulated human odontoblast-like cells (hOBs) and found that DNMT1 expression showed a decline that is contrary to the transcription of inflammatory cytokines. Knockdown of the DNMT1 gene increased the expression of several cytokines, including IL-6 and IL-8, in the LTA-induced inflammatory response. DNMT1 knockdown increased the phosphorylation of IKKα/ß, IκBα, and p65 in the NF-κB pathway and the phosphorylation of p38 and ERK in the MAPK pathway; however, only the NF-κB pathway inhibitor PDTC suppressed both IL-6 and IL-8 expression, whereas inhibitors of the MAPK pathway (U0126, SB2035580, and SP600125) did not. Furthermore, DNMT1 knockdown upregulated the expression of MyD88 and TRAF6 but only attenuated the MyD88 gene promoter methylation in LTA-treated hOBs. Taken together, these results demonstrated that DNMT1 depletion caused hypomethylation and upregulation of MyD88, which resulted in activation of the NF-κB pathway and the subsequent release of LTA-induced inflammatory cytokines in hOBs. This study emphasizes the critical role of DNA methylation in the immune defense of odontoblasts when dental pulp reacted to caries.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Cárie Dentária/imunologia , Fator 88 de Diferenciação Mieloide/genética , Odontoblastos/imunologia , Adolescente , Adulto , Citocinas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Odontoblastos/efeitos dos fármacos , Fosforilação , Transdução de Sinais , Ácidos Teicoicos/farmacologia
3.
J Cell Mol Med ; 22(5): 2558-2568, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502358

RESUMO

Dental pulp inflammation is a widespread public health problem caused by oral bacterial infections and can progress to pulp necrosis and periapical diseases. N6-methyladenosine (m6A) is a prevalent epitranscriptomic modification in mRNA. Previous studies have demonstrated that m6A methylation plays important roles in cell differentiation, embryonic development and stress responses. However, whether m6A modification affects dental pulp inflammation remains unknown. To address this issue, we investigated the expression of m6A and N6-adenosine methyltransferase (METTL3, METTL14) as well as demethylases (FTO, ALKBH5) and found that the levels of m6A and METTL3 were up-regulated in human dental pulp cells (HDPCs) stimulated by lipopolysaccharide (LPS). Furthermore, we knocked down METTL3 and demonstrated that METTL3 depletion decreased the expression of inflammatory cytokines and the phosphorylation of IKKα/ß, p65 and IκBα in the NF-κB signalling pathway as well as p38, ERK and JNK in the MAPK signalling pathway in LPS-induced HDPCs. The RNA sequencing analysis revealed that the vast number of genes affected by METTL3 depletion was associated with the inflammatory response. Previous research has shown that METTL3-dependent N6-adenosine methylation plays an important role in mRNA splicing. In this study, we found that METTL3 knockdown facilitated the expression of MyD88S, a splice variant of MyD88 that inhibits inflammatory cytokine production, suggesting that METTL3 might inhibit the LPS-induced inflammatory response of HDPCs by regulating alternative splicing of MyD88. These data shed light on new findings in epitranscriptomic regulation of the inflammatory response and open new avenues for research into the molecular mechanisms of dental pulp inflammation.


Assuntos
Processamento Alternativo/genética , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Inflamação/genética , Inflamação/patologia , Metiltransferases/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adolescente , Adulto , Citocinas/metabolismo , Regulação para Baixo/genética , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Metiltransferases/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Adulto Jovem
4.
Bioengineered ; 10(1): 197-206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117883

RESUMO

Dental pulp inflammation is a common bacterially driven inflammation characterized by the local accumulation of inflammatory mediators in human dental pulp. DNA methylation is a crucial epigenetic modification that that plays a fundamental role in gene transcription, and its role in inflammation-related diseases has recently attracted attention. However, its role in dental pulp inflammation is poorly understood. This study is aimed to elucidate the role of DNA methylation in lipopolysaccharide (LPS)-induced inflammatory reaction in human dental pulp cells (hDPCs). hDPCs were pretreated with DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) and a cytokine antibody array was used to detect LPS-induced cytokine expression. The results indicated that 5-Aza-CdR significantly increased the expression of several pro-inflammatory cytokines in LPS-treated cells, including IL-6, IL-8, GM-CSF, MCP-2 and RANTES. The increased expression levels of IL-6 and IL-8 were further verified by qRT-PCR and ELISA. Furthermore, pretreatment with 5-Aza-CdR resulted in upregulation of p-IKKα/ß, p-IκBα, p-p65 and p-ERK in the NK-κB and MAPK pathways. In addition, the 5mC level of the TRAF6 promoter was significantly decreased following 5-Aza-CdR pretreatment in the LPS-stimulated hDPCs. The findings indicate that 5-Aza-CdR significantly enhances the expression of proinflammatory cytokines and activates the NF-κB and MAPK signaling pathways by eliciting a decline in the 5mc level in the TRAF6 promoter in hDPCs, suggesting that DNA methylation may play an important role in dental pulp inflammation. This study highlights the important role of DNA methylation in the immunity defense of dental pulp infection.


Assuntos
Decitabina/farmacologia , Polpa Dentária/citologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Células Cultivadas , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética
5.
Cell Prolif ; 51(2): e12426, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29277934

RESUMO

OBJECTIVES: Ten-eleven translocation 1 (TET1) is a DNA methylcytosine (mC) dioxygenase discovered recently that can convert 5-mC into 5-hydroxymethylcytosine (5hmC). We previously reported that TET1 promotes odontoblastic differentiation of human dental pulp cells (hDPCs). The gene encoding the family with sequence similarity 20, member C (FAM20C) protein, is a potential TET1 target and showed demethylation during odontoblastic differentiation of hDPCs in our previous study. This study aimed to explore whether TET1-mediated hydroxymethylation could activate the FAM20C gene, thereby regulating hDPC differentiation. MATERIALS AND METHODS: The expression pattern of FAM20C and its potential changes during odontoblastic induction of hDPCs were assessed by Western blotting. Lentivirus-mediated transduction with short hairpin RNA (shRNA) was used to knock down FAM20C and TET1 expression in hDPCs. The mineralization potential of hDPCs was evaluated with an ALPase activity assay and by observing the mineralized matrix deposition and the expression of odontoblast-related markers DSPP and DMP1. Recombinant human FAM20C protein (rhFAM20C) was reintroduced into shTET1 cells in a rescue experiment. The dynamic hydroxymethylation status of the FAM20C gene promoter was examined using hydroxymethylated DNA immunoprecipitation (IP)-PCR. Chromatin IP-PCR and agarose gel electrophoresis were utilized to validate the recruitment of TET1 to its target loci in the FAM20C promoter. RESULTS: FAM20C protein level was upregulated after the odontoblastic induction of hDPCs. shRNA-mediated FAM20C suppression reduced the expression of DSPP and DMP1 after odontoblastic induction for 7 and 14 days. ALPase activity was reduced on day 7, and the formation of mineralized nodules was attenuated on day 14 after odontoblastic induction in FAM20C-inhibited hDPCs. Genomic 5hmC levels significantly decreased, and total 5mC levels increased in TET1-deficient hDPCs. In addition, a significant reduction in FAM20C also emerged. The rhFAM20C treatment of shTET1 cells attenuated the mineralization abnormalities caused by TET1 depletion. TET1 depletion prompted a decline in 5hmC levels in several regions on the FAM20C promoter. Enhanced TET1 recruitment was detected at the corresponding loci in the FAM20C promoter during odontoblastic induction. CONCLUSION: TET1 knockdown suppressed odontoblastic differentiation by restraining its direct binding to FAM20C promoter, and hence inhibiting FAM20C hydroxymethylation and subsequent transcription. These results suggest that TET1 potentially promotes the cytodifferentiation potential of hDPCs through its DNA demethylation machinery and upregulation of FAM20C protein expression.


Assuntos
Calcificação Fisiológica , Caseína Quinase I/biossíntese , Diferenciação Celular , Polpa Dentária/enzimologia , Proteínas da Matriz Extracelular/biossíntese , Regulação Enzimológica da Expressão Gênica , Oxigenases de Função Mista/biossíntese , Odontoblastos/enzimologia , Proteínas Proto-Oncogênicas/biossíntese , Adolescente , Adulto , Caseína Quinase I/genética , Polpa Dentária/citologia , Proteínas da Matriz Extracelular/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metilação , Oxigenases de Função Mista/genética , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa