RESUMO
Almost all iron ore tailings (IOTs) required activation prior to use as SCMs, which limited their application in building materials. This study investigated HMPT-IOTs and discovered that they possess latent hydraulic and pozzolanic properties. In order to better utilize as SCM, mechanical properties, hydration reactions, hydration products, microstructure, and pores were comprehensively studied through mechanical tests, hydration heat tests, XRD, SEM, TG, and MIP. The results show that when HMPT-IOTs replace cement at 10 wt%, 20 wt% and 30 wt%, the compressive strength at 28 days is 41.9 MPa, 47.9 MPa and 37.5 MPa, respectively. When the substitution amount reaches 30 wt%, it will reduce the cumulative heat of hydration and promote early hydration reactions. The main hydration products are ettringite and Ca(OH)2. As the nucleation site of C-S-H, hydration products are interconnected, making the microstructure denser. At this substitution level, Ca(OH)2 consumption was about 2% at 28 days of age. Simultaneously, the total pore volume was only 0.01 mL/g greater than that of the control group, and the number of micropores and transition pores decreased by approximately 3%.