Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
2.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
3.
BMC Genomics ; 24(1): 420, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495972

RESUMO

BACKGROUND: The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS: A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION: This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.


Assuntos
MicroRNAs , Microsporidiose , Nosema , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , Nosema/fisiologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Mensageiro , Redes Reguladoras de Genes
4.
BMC Microbiol ; 23(1): 334, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951859

RESUMO

BACKGROUND: Enterocytozoon bieneusi, Encephalitozoon spp., Cryptosporidium spp., and Giardia duodenalis (G. intestinalis) are enteric pathogens that cause diarrhea in pigs. This study aimed to determine the prevalence of these enteric parasites and their coinfection with E. bieneusi in diarrheic pigs in Southwest China (Chongqing and Sichuan) using nested polymerase chain reaction (nPCR) based methods. RESULTS: A total of 514 fecal samples were collected from diarrheic pigs from 14 pig farms in Chongqing (five farms) and Sichuan (nine farms) Provinces. The prevalence of Encephalitozoon spp., Cryptosporidium spp. and G. duodenalis was 16.14% (83/514), 0% (0/514), and 8.95% (46/514), respectively. Nested PCR revealed 305 mono-infections of E. bieneusi, six of E. cuniculi, two of E. hellem, and nine of G. duodenalis and 106 concurrent infections of E. bieneusi with the other enteric pathogens. No infections of E. intestinalis and Cryptosporidium species were detected. The highest coinfection was detected between E. bieneusi and E. cuniculi (10.5%, 54/514), followed by E. bieneusi and G. duodenalis (5.8%, 30/514) and E. bieneusi and E. hellem (2.9%, 15/514). E. bieneusi was the most frequently detected enteric pathogen, followed by E. cuniculi, G. duodenalis and E. hellem. There was a significant age-related difference in the prevalence of E. cuniculi in fattening pigs (χ2 = 15.266, df = 3, P = 0.002) and G. duodenalis in suckling pigs (χ2 = 11.92, df = 3, P = 0.008) compared with the other age groups. Sequence analysis of the ITS region of Encephalitozoon species showed two genotypes (II and III) for E. cuniculi and one (TURK1B) for E. hellem. Only G. duodenalis assemblage A was identified in all nested PCR-positive samples. E. bieneusi was found more often than other enteric pathogens. CONCLUSIONS: This study showed that E. bieneusi, Encephalitozoon spp. [E. cuniculi and E. hellem] and G. duodenalis were common enteric parasites in diarrheic pigs in Chongqing and Sichuan Provinces. In case of both mono-infection and coinfection, E. bieneusi was the most common enteric pathogen in diarrheic pigs. Thus, it may be a significant cause of diarrhea in pigs. Precautions should be taken to prevent the spread of these enteric parasites.


Assuntos
Coinfecção , Criptosporidiose , Cryptosporidium , Encephalitozoon , Enterocytozoon , Giardia lamblia , Giardíase , Microsporidiose , Animais , Suínos , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Enterocytozoon/genética , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Coinfecção/epidemiologia , Coinfecção/veterinária , Microsporidiose/epidemiologia , Microsporidiose/veterinária , China/epidemiologia , Genótipo , Fezes/parasitologia , Diarreia/epidemiologia , Diarreia/veterinária
5.
Eur J Clin Invest ; 53(12): e14067, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515404

RESUMO

BACKGROUND: Observational studies have suggested an association between lipid-lowering drugs and inflammatory bowel disease (IBD) risk. This study aimed to assess the causal influence of lipid-lowering agents on IBD risk using Mendelian randomization analysis. METHOD: In a population of 173,082 individuals of European ancestry, 55 single-nucleotide polymorphisms were identified as instrumental variables for 6 lipid-lowering drug targets (HMGCR, NPC1LC, PCSK9, LDLR, CETP and APOB). Summary statistics for the genome-wide association study of IBD, ulcerative colitis (UC) and Crohn's disease (CD) were obtained from the FinnGen consortium, Program in Complex Trait Genomics and UK Biobank. Inverse-variance weighted was employed as the primary MR method, and odds ratios (ORs) with 95% confidence intervals were reported as the results. Sensitivity analyses using conventional MR methods were conducted to assess result robustness. RESULTS: Gene-proxied inhibition of Niemann-Pick C1-like 1 (NPC1L1) was associated with an increased IBD risk (OR [95% CI]: 2.31 [1.38, 3.85]; p = .001), particularly in UC (OR [95% CI]: 2.40 [1.21, 4.74], p = .012), but not in CD. This finding was replicated in the validation cohort. Additionally, gene-proxied inhibition of low-density lipoprotein receptor was associated with reduced IBD (OR [95% CI]: .72 [.60, .87], p < .001) and UC risk (OR [95% CI]: .74 [.59, .92], p = .006), although this result was not replicated in the validation cohort. Other drug targets did not show significant associations with IBD, UC or CD risk. CONCLUSION: Inhibition of the lipid-lowering drug-target NPC1L1 leads to an increased IBD risk, mainly in the UC population.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Pró-Proteína Convertase 9 , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/genética , Doença de Crohn/tratamento farmacológico , Doença de Crohn/epidemiologia , Doença de Crohn/genética , Hipolipemiantes , Lipídeos
6.
Biomacromolecules ; 24(9): 3996-4004, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37555845

RESUMO

The bioconversion of homogeneous linear catechyl lignin (C-lignin) to polyhydroxyalkanoates (PHA) was examined for the first time in this study. C-lignins from vanilla, euphorbia, and candlenut seed coats (denoted as C1, C2, and C3, respectively) varied in their molecular structures, which showed different molecular weight distributions, etherification degrees, and contents of hydroxyl groups. A notable amount of nonetherified catechol units existed within C1 and C2 lignins, and these catechol units were consumed during fermentation. These results suggested that the nonetherified catechol structure was readily converted by Pseudomonas putida KT2440. Since the weight-average molecular weight of C2 raw lignin was 26.7% lower than that of C1, the bioconversion performance of C2 lignin was more outstanding. The P. putida KT2440 cell amount reached the maximum of 9.3 × 107 CFU/mL in the C2 medium, which was 37.9 and 82.4% higher than that in the C1 and C3 medium, respectively. Accordingly, PHA concentration reached 137 mg/L within the C2 medium, which was 41.2 and 149.1% higher than the C1 and C3 medium, respectively. Overall, C-lignin, with a nonetherified catechol structure and low molecular weight, benefits its microbial conversion significantly.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Lignina/química , Poli-Hidroxialcanoatos/química , Fermentação , Pseudomonas putida/química
7.
Scand J Gastroenterol ; 58(9): 1021-1029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021459

RESUMO

OBJECTIVES: This study aimed to investigate the relationship between lifestyle and gallstones. MATERIALS AND METHODS: We performed an observational study using the 2018-2020 National Health and Nutrition Examination Survey (NHANES). Univariate and multivariate-adjusted logistic regression analyses were performed to assess the correlations between lifestyle factors and gallstone risk. Second, Mendelian randomization (MR) was applied to decrease the causal relationship between lifestyle factors and gallstones. RESULTS: This observational study enrolled 11,970 individuals. The risk of gallstones was found to increase with increased sitting time (odds ratio (OR) 1.03, 95% CI 1.00-1.05, p = 0.02). In contrast, the risk of gallstones was found to decrease with recreational activity (OR 0.50, 95% CI 0.29-0.87, p = 0.02). The results of the MR also showed that time spent watching television (OR 1.646; 95% CI 1.161-2.333, p = 0.005) and physical activity (OR 0.953, 95% CI 0.924-0.988, p = 0.003) remained independently causally associated with gallstones. CONCLUSIONS: Prolonged sitting increases the risk of gallstones, whereas recreational activity reduces the risk. These findings need to be verified in further prospective cohort studies with larger sample sizes and longer follow-up periods.


Assuntos
Cálculos Biliares , Humanos , Cálculos Biliares/epidemiologia , Análise da Randomização Mendeliana , Inquéritos Nutricionais , Estudos Prospectivos , Estilo de Vida , Fatores de Risco , Estudo de Associação Genômica Ampla
8.
BMC Gastroenterol ; 23(1): 221, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370003

RESUMO

BACKGROUND: Ulcerative colitis is one of the two main forms of inflammatory bowel disease. Cuproptosis is reported to be a novel mode of cell death. METHODS: We examined clusters of cuproptosis related genes and immune cell infiltration molecules in 86 ulcerative colitis samples from the GSE179285 dataset. We identified the differentially expressed genes according to the clustering method, and the performance of the SVM model, the random forest model, the generalized linear model, and the limit gradient enhancement model were compared, and then the optimal machine model was selected. To assess the accuracy of the learning predictions, the nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis have been accurately predicted. RESULTS: Significant cuproptosis-related genes and immune response cells were detected between the ulcerative colitis and control groups. Two cuproptosis-associated molecular clusters were identified. Immune infiltration analysis indicated that different clusters exhibited significant heterogeneity. The immune scores for Cluster2 were elevated. Both the residual error and root mean square error of the random forest machine model had clinical significance. There was a clear correlation between the differentially expressed genes in cluster 2 and the response of immune cells. The nomogram and the calibration curve and decision curve analyses showed that the subtypes of ulcerative colitis had sufficient accuracy. CONCLUSION: We examined the complex relationship between cuproptosis and ulcerative colitis in a systematic manner. To estimate the likelihood that each subtype of cuproptosis will occur in ulcerative colitis patients and their disease outcome, we developed a promising prediction model.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/genética , Relevância Clínica , Análise por Conglomerados , Modelos Lineares , Apoptose
9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613990

RESUMO

Microsporidia are ubiquitous in the environment, infecting almost all invertebrates, vertebrates, and some protists. The microsporidian Nosema bombycis causes silkworms pébrine disease and leads to huge economic losses. Parasite secreted proteins play vital roles in pathogen-host interactions. Serine protease inhibitors (serpins), belonging to the largest and most broadly distributed protease inhibitor superfamily, are also found in Microsporidia. In this study, we characterized 19 serpins (NbSPNs) in N. bombycis; eight of them were predicted with signal peptides. All NbSPN proteins contain a typical conserved serpin (PF00079) domain. The comparative genomic analysis revealed that microsporidia serpins were only found in the genus Nosema. In addition to N. bombycis, a total of 34 serpins were identified in another six species of Nosema including N. antheraeae (11), N. granulosis (8), Nosema sp. YNPr (3), Nosema sp. PM-1 (3), N. apis (4), and N. ceranae (5). Serpin gene duplications in tandem obviously occurred in Nosema antheranae. Notably, the NbSPNs were phylogenetically clustered with serpins from the Chordopoxvirinae, the subfamily of Poxvirus. All 19 NbSPN transcripts were detected in the infected midgut and fat body, while 19 NbSPN genes except for NbSPN12 were found in the transcriptome of the infected silkworm embryonic cell line BmE-SWU1. Our work paves the way for further study of serpin function in microsporidia.


Assuntos
Bombyx , Nosema , Serpinas , Animais , Abelhas , Nosema/genética , Serpinas/genética , Serpinas/metabolismo , Interações Hospedeiro-Patógeno , Genômica , Bombyx/genética , Bombyx/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232879

RESUMO

Enterocytozoon hepatopenaei (EHP) is the pathogen of hepatopancreatic microsporidiosis (HPM) in shrimp. The diseased shrimp Litopenaeus vannamei exhibits a slow growth syndrome, which causes severe economic losses. Herein, 4D label-free quantitative proteomics was employed to analyze the hepatopancreas of L. vannamei with a light (EHPptp2 < 103 copies/50 ng hpDNA, L group) and heavy (EHPptp2 > 104 copies/50 ng hpDNA, H group) load of EHP to better understand the pathogenesis of HPM. Exactly 786 (L group) and 1056 (H group) differentially expressed proteins (DEPs) versus the EHP-free (C group) control were mainly clustered to lipid metabolism, amino acid metabolism, and energy production processing. Compared with the L group, the H group exhibited down-regulation significantly in lipid metabolism, especially in the elongation and degradation of fatty acid, biosynthesis of unsaturated fatty acid, metabolism of α-linolenic acid, sphingolipid, and glycerolipid, as well as juvenile hormone (JH) degradation. Expression pattern analysis showed that the degree of infection was positively correlated with metabolic change. About 479 EHP proteins were detected in infected shrimps, including 95 predicted transporters. These findings suggest that EHP infection induced the consumption of storage lipids and the entire down-regulation of lipid metabolism and the coupling energy production, in addition to the hormone metabolism disorder. These were ultimately responsible for the stunted growth.


Assuntos
Hepatopâncreas , Penaeidae , Aminoácidos , Animais , Regulação para Baixo , Enterocytozoon , Hormônios , Hormônios Juvenis , Metabolismo dos Lipídeos , Proteômica , Esfingolipídeos , Ácido alfa-Linolênico
11.
J Invertebr Pathol ; 186: 107596, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33910037

RESUMO

Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.


Assuntos
Trifosfato de Adenosina/metabolismo , Bombyx/metabolismo , Metabolismo Energético , Homeostase , Animais , Bombyx/embriologia , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Regulação para Cima
12.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068790

RESUMO

Silkworm Bombyx mori is an economically important insect and a lepidopteran model. Organelle proteome is vital to understanding gene functions; however, it remains to be identified in silkworm. Here, using the engineered ascorbate peroxidase APEX, we constructed transgenic B. mori embryo cells (BmE) expressing APEX-NLS, COX4-APEX, APEX-Rev, and APEX-KDEL in nucleus, mitochondrial matrix (MM), cytosol, and endoplasmic reticulum (ER), and isolated the biotin-labeled proteins using streptavidin-affinity purification, respectively. The isolated proteins were determined using LC-MS/MS and annotated by searching B. mori genomes downloaded from GenBank, SilkBase, SilkDB 2.0, and SilkDB 3.0, resulting in 842, 495, 311, and 445 organelle proteins identified, respectively. We mapped the 296 MM proteins annotated in the GenBank data to mitochondrial protein databases of the fly, human, and mouse, and found that 140 (47%) proteins are homologous to 80 fly proteins, and 65 (22%) proteins match to 31 and 29 human and mouse proteins, respectively. Protein orthology was predicted in multiple insects using OrthoMCL, producing 460 families containing 839 proteins we identified. Out of 460 families, 363 were highly conserved and found in all insects, leaving only three proteins without orthology in other insects, indicating that the identified proteins are highly conserved and probably play important roles in insects. A gene ontology enrichment analysis by clusterProfiler revealed that the nucleus proteins significantly enriched in cellular component terms of nucleus and nucleolus, the MM proteins markedly enriched in molecular function terms of nucleotide binding, and the cytosol proteins mainly enriched in biological process terms of small molecule metabolism. To facilitate the usage and analysis of our data, we developed an open-access database, Silkworm Organelle Proteome Database (SilkOrganPDB), which provides multiple modules for searching, browsing, downloading, and analyzing these proteins, including BLAST, HMMER, Organelle Proteins, Protein Locations, Sequences, Gene Ontology, Homologs, and Phylogeny. In summary, our work revealed the protein composition of silkworm BmE organelles and provided a database resource helpful for understanding the functions and evolution of these proteins.


Assuntos
Bombyx/genética , Bases de Dados Genéticas , Organelas/genética , Proteoma/genética , Animais , Ascorbato Peroxidases/genética , Bombyx/classificação , Organelas/classificação
13.
J Eukaryot Microbiol ; 67(1): 45-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31332864

RESUMO

Nosema bombycis (Nb) is a deadly species of microsporidia capable of causing pébrine, leading to heavy losses in sericulture. Germination is an important biological event in the invasion process of microsporidia. Septins, a family of membrane-associated proteins, play a critical role in tissue invasion and have been recognized as a virulence factor in numerous pathogens. Previous work in our laboratory has shown that Nosema bombycis septin2 (Nbseptin2) interacts with subtilisin-like protease 2 (NbSLP2). Herein, we found that Nbseptin2 was mainly associated with the plasma membrane in spores. Following spore germination, Nbseptin2 was found to co-localize with polar tube protein 1 (NbPTP1) at the polar cap and proximal zone of the polar tube. Co-immunoprecipitation and yeast two-hybrid analysis further confirmed that Nbseptin2 interacted with NbPTP1. The translocation and interaction of Nbseptin2 in the spores suggest that Nbseptin2 may play a significant role in microsporidia polar tube extrusion process. Our findings improve understanding of the mechanisms underlying microsporidia germination.


Assuntos
Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Nosema/genética , Septinas/genética , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Nosema/metabolismo , Septinas/química , Septinas/metabolismo , Alinhamento de Sequência , Esporos Fúngicos/metabolismo
14.
Environ Sci Technol ; 54(13): 8390-8400, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490670

RESUMO

Converting polycarbonate (PC) plastic waste into value-added chemicals and/or fuel additives by catalytic pyrolysis is a promising approach to dispose of solid wastes. In this study, a series of Fe-Ce@Al2O3 metal oxides were prepared by coprecipitation, impregnation, and a direct mixing method. The synthesized catalysts were then employed to investigate the catalytic conversion of PC wastes to produce aromatic hydrocarbons. Experimental results indicated that Fe-Ce@Al2O3 prepared by coprecipitation possessed superior catalytic activity because of its high content of weak acid sites, large pore volume, high surface area, and well dispersion of Fe and Ce active species, leading to an ∼3-fold increase in targeted monocyclic aromatic hydrocarbons compared to that achieved noncatalytically. Moreover, an increase in the catalyst to feedstock (C/F) mass ratio was beneficial to the production of aromatic hydrocarbons at the expense of phenolic products, and elevating the C/F ratio from 1:1 to 3:1 considerably increased the benzene formation as the enhancement factor was increased from 2.3 to 8.8.


Assuntos
Hidrocarbonetos Aromáticos , Pirólise , Óxido de Alumínio , Catálise , Cimento de Policarboxilato
15.
J Invertebr Pathol ; 174: 107394, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428446

RESUMO

Heat shock protein 70 (Hsp70), a highly conserved protein family, is widely distributed in organisms and plays fundamental roles in biotic and abiotic stress responses. However, reports on Hsp70 genes are scarce in microsporidia, a very large group of obligate intracellular parasites that can infect nearly all animals, including humans. In this study, we identified 37 Hsp70 proteins from eight microsporidian genomes and classified them into four subfamilies (A-D). The number of Hsp70 genes in these microsporidia was significantly fewer than in Rozella allomycis and yeast. All microsporidian species contained genes from each subfamily and similar subcellular locations (mitochondria, endoplasmic reticulum, cytosol, and cytosol and/or nucleus), indicating that each Hsp70 member may fulfil distinct functions. The conserved structures and motifs of the Hsp70 proteins in the same subfamily were highly similar. Expression analysis indicated that the subfamily C cytosol (cyto)-associated Hsp70s is functional during microsporidia development. Immunofluorescence assays revealed that Cyto-NbHsp70 was cytoplasmically located in the proliferation-stage of Nosema bombycis. Cyto-NbHsp70 antiserum also labeled Encephalitozoon hellem within infected cells, suggesting that this antiserum is a potential molecular marker for labeling the proliferative phases of different microsporidian species. The propagation of N. bombycis was significantly inhibited following RNAi of Cyto-NbHsp70, indicating that Cyto-NbHsp70 is important for pathogen proliferation. Our phylogenetic data suggest that Hsp70 proteins evolved during microsporidia adaption to intracellular parasitism, and they play important roles in pathogen development.


Assuntos
Genoma de Protozoário , Proteínas de Choque Térmico HSP70/genética , Microsporídios/fisiologia , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Encephalitozoon/genética , Encephalitozoon/fisiologia , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/fisiologia , Genoma Fúngico , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Microsporídios/genética , Nosema/genética , Nosema/fisiologia , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
16.
J Invertebr Pathol ; 174: 107420, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32522660

RESUMO

Microsporidia are obligate intracellular parasites and cannot be cultured in vitro, which limits the use of current genetic engineering technologies on this pathogen. We isolated sporoplasms of Nosema bombycis to attempt to culture the pathogen in vitro. Cell-free medium was designed and successfully maintained the sporoplasms for 5 days. The sporoplasms were able to absorb ATP from the medium and DNA replicated during cultivation, although there was not a significant change in morphology and number of sporoplasms. Our study provides a strategy for in vitro cultivation and genetic manipulation of microsporidia. .


Assuntos
Engenharia Genética/métodos , Nosema/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos
17.
J Invertebr Pathol ; 169: 107310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862268

RESUMO

Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.


Assuntos
Bombyx/microbiologia , Interações Hospedeiro-Patógeno , Nosema/fisiologia , Animais , Bombyx/embriologia , Bombyx/crescimento & desenvolvimento , Embrião não Mamífero/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , RNA-Seq
20.
J Invertebr Pathol ; 153: 75-84, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258842

RESUMO

Microsporidia Nosema bombycis CQ1 can be vertically transmitted in silkworm Bombyx mori but Vairimorpha necatrix BM cannot. Therefore, the pathological differences in silkworm infected with these two microsporidia required clarification. Here, we compared the virulence of N. bombycis CQ1 and V. necatrix BM against silkworm. The pathological characteristics in intestine, testis and ovary were surveyed using paraffin sections, scanning electron microscopy and transmission electron microscopy. Our data firstly showed that the virulence of V. necatrix BM was weaker than that of N. bombycis CQ1. Secondly, the typical symptom of V. necatrix BM infection is making xenomas, which are full of pathogens in different stages, at the posterior of intestine. However, no xenomas were formed surrounding intestines infected with N. bombycis CQ1. Thirdly, N. bombycis CQ1 can cluster spores near the trachea while infecting ovaries. It is worth noting that N. bombycis CQ1 infected epithelial cells and connective tissues of ovaries, while V. necatrix BM did not. Although silkworm ovaries can not be infected by V. necatrix BM in vivo, it can infect embryonic and ovarian cell lines in vitro. This study is the first report about comparing infection features of N. bombycis CQ1 and V. necatrix BM in silkworm tissues and it provided elaborate and visual information of pathological characteristics which can help to explain the different transmission strategies of these two microsporidia.


Assuntos
Bombyx/parasitologia , Microsporídios/fisiologia , Nosema/patogenicidade , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa