Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 13(29): 12687-12696, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477619

RESUMO

Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify the electrophoretic force down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is suitable for detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single molecule level.


Assuntos
Nanopartículas , Nanotecnologia , DNA , Eletroforese
2.
ACS Photonics ; 8(10): 3111-3118, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692901

RESUMO

Single particle tracking has found broad applications in the life and physical sciences, enabling the observation and characterization of nano- and microscopic motion. Fluorescence-based approaches are ideally suited for high-background environments, such as tracking lipids or proteins in or on cells, due to superior background rejection. Scattering-based detection is preferable when localization precision and imaging speed are paramount due to the in principle infinite photon budget. Here, we show that micromirror-based total internal reflection dark field microscopy enables background suppression previously only reported for interferometric scattering microscopy, resulting in nanometer localization precision at 6 µs exposure time for 20 nm gold nanoparticles with a 25 × 25 µm2 field of view. We demonstrate the capabilities of our implementation by characterizing sub-nanometer deterministic flows of 20 nm gold nanoparticles at liquid-liquid interfaces. Our results approach the optimal combination of background suppression, localization precision, and temporal resolution achievable with pure scattering-based imaging and tracking of nanoparticles at interfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa