Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(10): 7635-7641, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902286

RESUMO

A strong Coulomb interaction could lead to a strongly bound exciton with high-order excited states, similar to the Rydberg atom. The interaction of giant Rydberg excitons can be engineered for a correlated ordered exciton array with a Rydberg blockade, which is promising for realizing quantum simulation. Monolayer transition metal dichalcogenides, with their greatly enhanced Coulomb interaction, are an ideal platform to host the Rydberg excitons in two dimensions. Here, we employ helicity-resolved magneto-photocurrent spectroscopy to identify Rydberg exciton states up to 11s in monolayer WSe2. Notably, the radius of the Rydberg exciton at 11s can be as large as 214 nm, orders of magnitude larger than the 1s exciton. The giant valley-polarized Rydberg exciton not only provides an exciting platform to study the strong exciton-exciton interaction and nonlinear exciton response but also allows the investigation of the different interplay between the Coulomb interaction and Landau quantization, tunable from a low- to high-magnetic-field limit.

2.
Nano Lett ; 20(1): 694-700, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31865705

RESUMO

Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moiré potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 heterobilayer with a 60° twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K' valleys, a result of the large Landé g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ∼10.7 and ∼15.2, respectively, which is in good agreement with theoretical expectation. The photoluminescence (PL) from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation with the valley polarization of the singlet interlayer exciton approaching unity at ∼20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.

3.
Nano Lett ; 19(10): 6886-6893, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31487988

RESUMO

Spin-forbidden intravalley dark excitons in tungsten-based transition-metal dichalcogenides (TMDCs), because of their unique spin texture and long lifetime, have attracted intense research interest. Here, we show that we can control the dark exciton electrostatically by dressing it with one free electron or free hole, forming the dark trions. The existence of the dark trions is suggested by the unique magneto-photoluminescence spectroscopy pattern of the boron nitride (BN)-encapsulated monolayer WSe2 device at low temperature. The unambiguous evidence of the dark trions is further obtained by directly resolving the radiation pattern of the dark trions through back focal plane imaging. The dark trions possess a binding energy of ∼15 meV, and they inherit the long lifetime and large g-factor from the dark exciton. Interestingly, under the out-of-plane magnetic field, dressing the dark exciton with one free electron or hole results in distinctively different valley polarization of the emitted photon, as a result of the different intervalley scattering mechanism for the electron and hole. Finally, the lifetime of the positive dark trion can be further tuned from ∼50 ps to ∼215 ps by controlling the gate voltage. The gate-tunable dark trions usher in new opportunities for excitonic optoelectronics and valleytronics.

4.
Nano Lett ; 19(1): 299-307, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30556398

RESUMO

Monolayer transition metal dichalcogenides (TMDs) possess superior optical properties, including the valley degree of freedom that can be accessed through the excitation light of certain helicity. Although WS2 and WSe2 are known for their excellent valley polarization due to the strong spin-orbit coupling, the optical bandgap is limited by the ability to choose from only these two materials. This limitation can be overcome through the monolayer alloy semiconductor, WS2 xSe2(1- x), which promises an atomically thin semiconductor with tunable bandgap. In this work, we show that the high-quality BN encapsulated monolayer WS0.6Se1.4 inherits the superior optical properties of tungsten-based TMDs, including a trion splitting of ∼6 meV and valley polarization as high as ∼60%. In particular, we demonstrate for the first time the emerging and gate-tunable interlayer electron-phonon coupling in the BN/WS0.6Se1.4/BN van der Waals heterostructure, which renders the otherwise optically silent Raman modes visible. In addition, the emerging Raman signals can be drastically enhanced by the resonant coupling to the 2s state of the monolayer WS0.6Se1.4 A exciton. The BN/WS2 xSe2(1- x)/BN van der Waals heterostructure with a tunable bandgap thus provides an exciting platform for exploring the valley degree of freedom and emerging excitonic physics in two-dimension.

5.
Nat Commun ; 14(1): 4604, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528094

RESUMO

Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2 trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2 valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2 layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2 under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

6.
Nat Commun ; 14(1): 5042, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598211

RESUMO

Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2 moiré heterojunction. The two moiré sites in the first layer WSe2 interfacing WS2 allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2 and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2 layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2.

7.
Nat Commun ; 11(1): 2640, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457328

RESUMO

The heterostructure of monolayer transition metal dichalcogenides (TMDCs) provides a unique platform to manipulate exciton dynamics. The ultrafast carrier transfer across the van der Waals interface of the TMDC hetero-bilayer can efficiently separate electrons and holes in the intralayer excitons with a type II alignment, but it will funnel excitons into one layer with a type I alignment. In this work, we demonstrate the reversible switch from exciton dissociation to exciton funneling in a MoSe2/WS2 heterostructure, which manifests itself as the photoluminescence (PL) quenching to PL enhancement transition. This transition was realized through effectively controlling the quantum capacitance of both MoSe2 and WS2 layers with gating. PL excitation spectroscopy study unveils that PL enhancement arises from the blockage of the optically excited electron transfer from MoSe2 to WS2. Our work demonstrates electrical control of photoexcited carrier transfer across the van der Waals interface, the understanding of which promises applications in quantum optoelectronics.

8.
Nat Commun ; 11(1): 3104, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561746

RESUMO

Strong many-body interaction in two-dimensional transitional metal dichalcogenides provides a unique platform to study the interplay between different quasiparticles, such as prominent phonon replica emission and modified valley-selection rules. A large out-of-plane magnetic field is expected to modify the exciton-phonon interactions by quantizing excitons into discrete Landau levels, which is largely unexplored. Here, we observe the Landau levels originating from phonon-exciton complexes and directly probe exciton-phonon interaction under a quantizing magnetic field. Phonon-exciton interaction lifts the inter-Landau-level transition selection rules for dark trions, manifested by a distinctively different Landau fan pattern compared to bright trions. This allows us to experimentally extract the effective mass of both holes and electrons. The onset of Landau quantization coincides with a significant increase of the valley-Zeeman shift, suggesting strong many-body effects on the phonon-exciton interaction. Our work demonstrates monolayer WSe2 as an intriguing playground to study phonon-exciton interactions and their interplay with charge, spin, and valley.

9.
Nat Commun ; 10(1): 4649, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604933

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
ACS Nano ; 13(12): 14107-14113, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31765125

RESUMO

Inversion symmetry breaking and 3-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition-metal dichalcogenides, which can be exploited for valleytronics applications. However, the short lifetime of the exciton significantly constrains the possible applications. In contrast, the dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ∼23 meV, based on the experimentally extracted exchange interaction (∼7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.

11.
Nat Commun ; 10(1): 2469, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171789

RESUMO

Tungsten-based monolayer transition metal dichalcogenides host a long-lived "dark" exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explore light-matter interactions beyond electric dipole transitions. Here we demonstrate that the coupling of the dark exciton and an optically silent chiral phonon enables the intrinsic photoluminescence of the dark-exciton replica in monolayer WSe2. Gate and magnetic-field dependent PL measurements unveil a circularly-polarized replica peak located below the dark exciton by 21.6 meV, equal to E″ phonon energy from Se vibrations. First-principles calculations show that the exciton-phonon interaction selectively couples the spin-forbidden dark exciton to the intravalley spin-allowed bright exciton, permitting the simultaneous emission of a chiral phonon and a circularly-polarized photon. Our discovery and understanding of the phonon replica reveals a chirality dictated emission channel of the phonons and photons, unveiling a new route of manipulating valley-spin.

13.
Nat Commun ; 9(1): 3719, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213927

RESUMO

Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions, and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN-encapsulated single-layer WSe2. The biexciton state only exists in charge-neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.

14.
ACS Nano ; 12(12): 12795-12804, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30433762

RESUMO

Alloying plays a central role in tailoring the material properties of 2D transition-metal dichalcogenides (TMDs). However, despite widespread reports, the details of the alloying mechanism in 2D TMDs have remained largely unknown and are yet to be further explored. Here, we combine a set of systematic experiments with ab initio density functional theory (DFT) calculations to unravel a defect-mediated mechanism for the alloying of monolayer TMD crystals. In our alloying approach, a monolayer MoSe2 film serves as a host crystal in which exchanging selenium (Se) atoms with sulfur (S) atoms yields a MoS2 xSe2(1- x) alloy. Our study reveals that the driving force required for the alloying of CVD-grown films with abundant vacancy-type defects is significantly lower than that required for the alloying of exfoliated films with fewer vacancies. Indeed, we show that pre-existing Se vacancies in the host MoSe2 lattice mediate the replacement of chalcogen atoms and facilitate the synthesis of MoS2 xSe2(1- x) alloys. Our DFT calculations suggest that S atoms can bind to Se vacancies and then diffuse throughout the host MoSe2 lattice via exchanging the position with Se vacancies, further supporting our proposed defect-mediated alloying mechanism. Beside native vacancy defects, we show that the existence of large-scale defects in CVD-grown MoSe2 films causes the fracture of alloys under the alloying-induced strain, while no such effect is observed in exfoliated MoSe2 films. Our study provides a deep insight into the details of the alloying mechanism and enables the synthesis of 2D alloys with tunable properties.

15.
Nanoscale ; 9(46): 18546-18551, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29164206

RESUMO

Using ultrafast degenerate pump-probe spectroscopy, we have investigated the ultrafast exciton dynamics of monolayer MoSe2 at different pump fluences. The exciton-exciton annihilation, typically occurring tens of picoseconds after pump excitation, has been found to have a substantial correlation with the initial relaxation process dominated by the defect trapping of excitons. A new exciton-exciton annihilation model has been proposed by introducing a coupling term that accounts for the initial relaxation contribution. This coupling term can be tuned by varying the pump excitation intensity and at a high intensity it vanishes due to the full occupation of the defect states. At the same time, the final electron-hole recombination is found to be affected by the heat accumulation effect originating from the high intensity pump pulses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa