Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 22(1): 153, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609953

RESUMO

BACKGROUND: Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS: From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS: In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS: The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION: We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.


Assuntos
Inteligência Artificial , Neoplasias da Glândula Tireoide , Humanos , Metástase Linfática/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem
2.
Ultraschall Med ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052240

RESUMO

PURPOSE: To investigate the feasibility of deep learning radiomics (DLR) based on multimodal ultrasound to differentiate the primary cancer sites of metastatic cervical lymphadenopathy (CLA). MATERIALS AND METHODS: This study analyzed 280 biopsy-confirmed metastatic CLAs from 280 cancer patients, including 54 from head and neck squamous cell carcinoma (HNSCC), 58 from thyroid cancer (TC), 92 from lung cancer (LC), and 76 from gastrointestinal cancer (GIC). Before biopsy, patients underwent conventional ultrasound (CUS), ultrasound elastography (UE), and contrast-enhanced ultrasound (CEUS). Based on CUS, DLR models using CUS, CUS+UE, CUS+CEUS, and CUS+UE+CEUS data were developed and compared. The best model was integrated with key clinical indicators selected by univariate analysis to achieve the best classification performance. RESULTS: All DLR models achieved similar performance with respect to classifying four primary tumor sites of metastatic CLA (AUC:0.708~0.755). After integrating key clinical indicators (age, sex, and neck level), the US+UE+CEUS+clinical model yielded the best performance with an overall AUC of 0.822 in the validation cohort, but there was no significance compared with the basal CUS+clinical model (P>0.05), both of which identified metastasis from HNSCC, TC, LC, and GIC with 0.869 and 0.911, 0.838 and 0.916, 0.750 and 0.610, and 0.829 and 0.769, respectively. CONCLUSION: The ultrasound-based DLR model can be used to classify the primary cancer sites of metastatic CLA, and the CUS combined with clinical indicators is adequate to provide a high discriminatory performance. The addition of the combination of UE and CEUS data is expected to further improve performance.

3.
BMC Med ; 20(1): 269, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008835

RESUMO

BACKGROUND: Accurate diagnosis of unexplained cervical lymphadenopathy (CLA) using medical images heavily relies on the experience of radiologists, which is even worse for CLA patients in underdeveloped countries and regions, because of lack of expertise and reliable medical history. This study aimed to develop a deep learning (DL) radiomics model based on B-mode and color Doppler ultrasound images for assisting radiologists to improve their diagnoses of the etiology of unexplained CLA. METHODS: Patients with unexplained CLA who received ultrasound examinations from three hospitals located in underdeveloped areas of China were retrospectively enrolled. They were all pathologically confirmed with reactive hyperplasia, tuberculous lymphadenitis, lymphoma, or metastatic carcinoma. By mimicking the diagnosis logic of radiologists, three DL sub-models were developed to achieve the primary diagnosis of benign and malignant, the secondary diagnosis of reactive hyperplasia and tuberculous lymphadenitis in benign candidates, and of lymphoma and metastatic carcinoma in malignant candidates, respectively. Then, a CLA hierarchical diagnostic model (CLA-HDM) integrating all sub-models was proposed to classify the specific etiology of each unexplained CLA. The assistant effectiveness of CLA-HDM was assessed by comparing six radiologists between without and with using the DL-based classification and heatmap guidance. RESULTS: A total of 763 patients with unexplained CLA were enrolled and were split into the training cohort (n=395), internal testing cohort (n=171), and external testing cohorts 1 (n=105) and 2 (n=92). The CLA-HDM for diagnosing four common etiologies of unexplained CLA achieved AUCs of 0.873 (95% CI: 0.838-0.908), 0.837 (95% CI: 0.789-0.889), and 0.840 (95% CI: 0.789-0.898) in the three testing cohorts, respectively, which was systematically more accurate than all the participating radiologists. With its assistance, the accuracy, sensitivity, and specificity of six radiologists with different levels of experience were generally improved, reducing the false-negative rate of 2.2-10% and the false-positive rate of 0.7-3.1%. CONCLUSIONS: Multi-cohort testing demonstrated our DL model integrating dual-modality ultrasound images achieved accurate diagnosis of unexplained CLA. With its assistance, the gap between radiologists with different levels of experience was narrowed, which is potentially of great significance for benefiting CLA patients in underdeveloped countries and regions worldwide.


Assuntos
Carcinoma , Aprendizado Profundo , Linfadenopatia , Linfoma , Tuberculose dos Linfonodos , Humanos , Hiperplasia , Linfadenopatia/diagnóstico por imagem , Linfoma/diagnóstico por imagem , Linfoma/patologia , Estudos Retrospectivos
5.
Vis Comput Ind Biomed Art ; 6(1): 20, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828411

RESUMO

Artificial intelligence (AI)-based radiomics has attracted considerable research attention in the field of medical imaging, including ultrasound diagnosis. Ultrasound imaging has unique advantages such as high temporal resolution, low cost, and no radiation exposure. This renders it a preferred imaging modality for several clinical scenarios. This review includes a detailed introduction to imaging modalities, including Brightness-mode ultrasound, color Doppler flow imaging, ultrasound elastography, contrast-enhanced ultrasound, and multi-modal fusion analysis. It provides an overview of the current status and prospects of AI-based radiomics in ultrasound diagnosis, highlighting the application of AI-based radiomics to static ultrasound images, dynamic ultrasound videos, and multi-modal ultrasound fusion analysis.

6.
IEEE Trans Med Imaging ; 42(4): 996-1008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36383594

RESUMO

Identifying squamous cell carcinoma and adenocarcinoma subtypes of metastatic cervical lymphadenopathy (CLA) is critical for localizing the primary lesion and initiating timely therapy. B-mode ultrasound (BUS), color Doppler flow imaging (CDFI), ultrasound elastography (UE) and dynamic contrast-enhanced ultrasound provide effective tools for identification but synthesis of modality information is a challenge for clinicians. Therefore, based on deep learning, rationally fusing these modalities with clinical information to personalize the classification of metastatic CLA requires new explorations. In this paper, we propose Multi-step Modality Fusion Network (MSMFN) for multi-modal ultrasound fusion to identify histological subtypes of metastatic CLA. MSMFN can mine the unique features of each modality and fuse them in a hierarchical three-step process. Specifically, first, under the guidance of high-level BUS semantic feature maps, information in CDFI and UE is extracted by modality interaction, and the static imaging feature vector is obtained. Then, a self-supervised feature orthogonalization loss is introduced to help learn modality heterogeneity features while maintaining maximal task-consistent category distinguishability of modalities. Finally, six encoded clinical information are utilized to avoid prediction bias and improve prediction ability further. Our three-fold cross-validation experiments demonstrate that our method surpasses clinicians and other multi-modal fusion methods with an accuracy of 80.06%, a true-positive rate of 81.81%, and a true-negative rate of 80.00%. Our network provides a multi-modal ultrasound fusion framework that considers prior clinical knowledge and modality-specific characteristics. Our code will be available at: https://github.com/RichardSunnyMeng/MSMFN.


Assuntos
Adenocarcinoma , Técnicas de Imagem por Elasticidade , Linfadenopatia , Humanos , Ultrassonografia , Linfadenopatia/diagnóstico por imagem , Semântica
7.
Precis Clin Med ; 4(4): 271-286, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35692858

RESUMO

Medical imaging provides a comprehensive perspective and rich information for disease diagnosis. Combined with artificial intelligence technology, medical imaging can be further mined for detailed pathological information. Many studies have shown that the macroscopic imaging characteristics of tumors are closely related to microscopic gene, protein and molecular changes. In order to explore the function of artificial intelligence algorithms in in-depth analysis of medical imaging information, this paper reviews the articles published in recent years from three perspectives: medical imaging analysis method, clinical applications and the development of medical imaging in the direction of pathological molecular prediction. We believe that AI-aided medical imaging analysis will be extensively contributing to precise and efficient clinical decision.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa