Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Drug Dev Res ; 85(1): e22158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349262

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.


Assuntos
Glioblastoma , Pró-Fármacos , Humanos , Medicina de Precisão , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Barreira Hematoencefálica , Linhagem Celular , Pró-Fármacos/farmacologia
2.
J Nanobiotechnology ; 21(1): 301, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635243

RESUMO

BACKGROUND: Early detection and removal of bladder cancer in patients is crucial to prevent tumor recurrence and progression. Because current imaging techniques may fail to detect small lesions of in situ carcinomas, patients with bladder cancer often relapse after initial diagnosis, thereby requiring frequent follow-up and treatments. RESULTS: In an attempt to obtain a sensitive and high-resolution imaging modality for bladder cancer, we have developed a photoacoustic imaging approach based on the use of PEGylated gold nanorods (GNRs) as a contrast agent, functionalized with the peptide cyclic [CphgisoDGRG] (Iso4), a selective ligand of α5ß1 integrin expressed by bladder cancer cells. This product (called GNRs@PEG-Iso4) was produced by a simple two-step procedure based on GNRs activation with lipoic acid-polyethyleneglycol(PEG-5KDa)-maleimide and functionalization with peptide Iso4. Biochemical and biological studies showed that GNRs@PEG-Iso4 can efficiently recognize purified integrin α5ß1 and α5ß1-positive bladder cancer cells. GNRs@PEG-Iso4 was stable and did not aggregate in urine or in 5% sodium chloride, or after freeze/thaw cycles or prolonged exposure to 55 °C, and, even more importantly, do not settle after instillation into the bladder. Intravesical instillation of GNRs@PEG-Iso4 into mice bearing orthotopic MB49-Luc bladder tumors, followed by photoacoustic imaging, efficiently detected small cancer lesions. The binding to tumor lesions was competed by a neutralizing anti-α5ß1 integrin antibody; furthermore, no binding was observed to healthy bladders (α5ß1-negative), pointing to a specific targeting mechanism. CONCLUSION: GNRs@PEG-Iso4 represents a simple and robust contrast agent for photoacoustic imaging and diagnosis of small bladder cancer lesions.


Assuntos
Nanotubos , Técnicas Fotoacústicas , Neoplasias da Bexiga Urinária , Animais , Camundongos , Meios de Contraste , Integrina alfa5beta1 , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Ouro
3.
Sensors (Basel) ; 23(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850894

RESUMO

Magnesium (Mg) alloys possess unique properties that make them ideal for use as biodegradable implants in clinical applications. However, reports on the in vivo assessment of these alloys are insufficient. Thus, monitoring the degradation of Mg and its alloys in vivo is challenging due to the dynamic process of implant degradation and tissue regeneration. Most current works focus on structural remodeling, but functional assessment is crucial in providing information about physiological changes in tissues, which can be used as an early indicator of healing. Here, we report continuous wave near-infrared spectroscopy (CW NIRS), a non-invasive technique that is potentially helpful in assessing the implant-tissue dynamic interface in a rodent model. The purpose of this study was to investigate the effects on hemoglobin changes and tissue oxygen saturation (StO2) after the implantation of Mg-alloy (WE43) and titanium (Ti) implants in rats' femurs using a multiwavelength optical probe. Additionally, the effect of changes in the skin on these parameters was evaluated. Lastly, combining NIRS with photoacoustic (PA) imaging provides a more reliable assessment of tissue parameters, which is further correlated with principal component analysis.


Assuntos
Implantes Absorvíveis , Espectroscopia de Luz Próxima ao Infravermelho , Ratos , Animais , Ligas , Magnésio , Análise de Componente Principal
4.
Sensors (Basel) ; 23(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36991774

RESUMO

Biodegradable magnesium-based implants offer mechanical properties similar to natural bone, making them advantageous over nonbiodegradable metallic implants. However, monitoring the interaction between magnesium and tissue over time without interference is difficult. A noninvasive method, optical near-infrared spectroscopy, can be used to monitor tissue's functional and structural properties. In this paper, we collected optical data from an in vitro cell culture medium and in vivo studies using a specialized optical probe. Spectroscopic data were acquired over two weeks to study the combined effect of biodegradable Mg-based implant disks on the cell culture medium in vivo. Principal component analysis (PCA) was used for data analysis. In the in vivo study, we evaluated the feasibility of using the near-infrared (NIR) spectra to understand physiological events in response to magnesium alloy implantation at specific time points (Day 0, 3, 7, and 14) after surgery. Our results show that the optical probe can detect variations in vivo from biological tissues of rats with biodegradable magnesium alloy "WE43" implants, and the analysis identified a trend in the optical data over two weeks. The primary challenge of in vivo data analysis is the complexity of the implant interaction near the interface with the biological medium.


Assuntos
Ligas , Magnésio , Ratos , Animais , Magnésio/química , Ligas/química , Espectroscopia de Luz Próxima ao Infravermelho , Implantes Absorvíveis , Modelos Animais , Teste de Materiais
5.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139203

RESUMO

Bioinspired nanoparticles have recently been gaining attention as promising multifunctional nanoplatforms for therapeutic applications in cancer, including breast cancer. Here, the efficiency of the chemo-photothermal and photoacoustic properties of hybrid albumin-modified nanoparticles (HSA-NPs) loaded with doxorubicin was evaluated in a three-dimensional breast cancer cell model. The HSA-NPs showed a higher uptake and deeper penetration into breast cancer spheroids than healthy breast cell 3D cultures. Confocal microscopy revealed that, in tumour spheroids incubated with doxorubicin-loaded NPs for 16 h, doxorubicin was mainly localised in the cytoplasm, while a strong signal was detectable at the nuclear level after 24 h, suggesting a time-dependent uptake. To evaluate the cytotoxicity of doxorubicin-loaded NPs, tumour spheroids were treated for up to 96 h with increasing concentrations of NPs, showing marked toxicity only at the highest concentration of doxorubicin. When doxorubicin administration was combined with laser photothermal irradiation, enhanced cytotoxicity was observed at lower concentrations and incubation times. Finally, the photoacoustic properties of doxorubicin-loaded NPs were evaluated in tumour spheroids, showing a detectable signal increasing with NP concentration. Overall, our data show that the combined effect of chemo-photothermal therapy results in a shorter exposure time to doxorubicin and a lower drug dose. Furthermore, owing to the photoacoustic properties of the NPs, this nanoplatform may represent a good candidate for theranostic applications.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Técnicas Fotoacústicas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Doxorrubicina/farmacologia , Fototerapia/métodos , Linhagem Celular Tumoral , Hipertermia Induzida/métodos
6.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890812

RESUMO

In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.


Assuntos
Corpo Humano , Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681890

RESUMO

Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.


Assuntos
Albuminas/química , Neoplasias da Mama/terapia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Terapia Fototérmica/métodos , Antibióticos Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Humanos , Raios Infravermelhos , Nanopartículas/química , Células Tumorais Cultivadas
8.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770999

RESUMO

The integration of nuclear imaging analysis with nanomedicine has tremendously grown and represents a valid and powerful tool for the development and clinical translation of drug delivery systems. Among the various types of nanostructures used as drug carriers, nanovesicles represent intriguing platforms due to their capability to entrap both lipophilic and hydrophilic agents, and their well-known biocompatibility and biodegradability. In this respect, here we present the development of a labelling procedure of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)-based liposomes incorporating an ad hoc designed lipophilic NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) analogue, derivatized with an oleic acid residue, able to bind the positron emitter gallium-68(III). Based on POPC features, the optimal conditions for liposome labelling were studied with the aim of optimizing the Ga(III) incorporation and obtaining a significant radiochemical yield. The data presented in this work demonstrate the feasibility of the labelling procedure on POPC liposomes co-formulated with the ad hoc designed NOTA analogue. We thus provided a critical insight into the practical aspects of the development of vesicles for theranostic approaches, which in principle can be extended to other nanosystems exploiting a variety of bioconjugation protocols.


Assuntos
Nanopartículas/química , Difração de Nêutrons , Fosfatidilcolinas/química , Espalhamento a Baixo Ângulo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Estrutura Molecular , Nanomedicina , Fosfatidilcolinas/síntese química
9.
Anal Chem ; 92(6): 4451-4458, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32069028

RESUMO

We present a processing method, based on the multivariate curve resolution approach (MCR), to denoise 2D solid-state NMR spectra, yielding a substantial S/N ratio increase while preserving the lineshapes and relative signal intensities. These spectral features are particularly important in the quantification of silicon species, where sensitivity is limited by the low natural abundance of the 29Si nuclei and by the dilution of the intrinsic protons of silica, but can be of interest also when dealing with other intermediate-to-low receptivity nuclei. This method also offers the possibility of coprocessing multiple 2D spectra that have the signals at the same frequencies but with different intensities (e.g.: as a result of a variation in the mixing time). The processing can be carried out on the time-domain data, thus preserving the possibility of applying further processing to the data. As a demonstration, we have applied Cadzow denoising on the MCR-processed FIDs, achieving a further increase in the S/N ratio and more effective denoising also on the transients at longer indirect evolution times. We have applied the combined denoising on a set of experimental data from a lysozyme-silica composite.

10.
Pharmacol Res ; 158: 104920, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32461187

RESUMO

Anaplastic thyroid cancer (ATC) is a rare neoplasia with a poor prognosis. Proliferation and apoptosis assays were performed on ATC cell lines (8305C, 8505C) exposed to vinorelbine, lenvatinib, as well as to concomitant combinations. ABCB1, ABCG2 and CSF-1 mRNA expression was evaluated by real time PCR. The relative levels of pospho Akt were investigated as part of a human phospho-kinase array analysis, and CSF-1 and VEGFR-2 protein levels were measured by ELISA. The intracellular concentration of lenvatinib in ATC cells was measured by combined reversed-phase liquid chromatography-tandem mass spectrometry. An ATC subcutaneous xenograft tumor model in nude mice was treated with vinorelbine, lenvatinib, or vinorelbine plus lenvatinib. After treatment with vinorelbine, lenvatinib, a significant antiproliferative effect in ATC cell lines was observed. The concomitant treatment of vinorelbine and lenvatinib revealed synergism for all the fractions of affected cells. A decrease in ABCB1 expression was reported in both ATC cell lines treated with the lenvatinib plus vinorelbine combination, as was an increase in the intracellular concentration of lenvatinib. The combination caused a decrease in Akt, GSK3α/ß, PRAS40 and Src phosphorylation, and in both CSF-1 mRNA and protein levels. In the subcutaneous tumor model, the combination reduced the tumor volume during the treatment period. Our results establish the synergistic ATC antitumor activity of a vinorelbine and lenvatinib combination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Compostos de Fenilureia/administração & dosagem , Quinolinas/administração & dosagem , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Vinorelbina/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
11.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884846

RESUMO

Research on microcirculatory alterations in human heart disease is essential to understand the genesis of myocardial contractile dysfunction and its evolution towards heart failure. The use of contrast agents in magnetic resonance imaging is an important tool in medical diagnostics related to this dysfunction. Contrast agents significantly improve the imaging by enhancing the nuclear magnetic relaxation rates of water protons in the tissues where they are distributed. Gadolinium complexes are widely employed in clinical practice due to their high magnetic moment and relatively long electronic relaxation time. In this study, the behavior of gadolinium ion as a contrast agent was investigated by two complementary methods, relaxometry and secondary ion mass spectrometry. The study examined the distribution of blood flow within the microvascular network in ex vivo Langendorff isolated rat heart models, perfused with Omniscan® contrast agent. The combined use of secondary ion mass spectrometry and relaxometry allowed for both a qualitative mapping of agent distribution as well as the quantification of gadolinium ion concentration and persistence. This combination of a chemical mapping and temporal analysis of the molar concentration of gadolinium ion in heart tissue allows for new insights on the biomolecular mechanisms underlying the microcirculatory alterations in heart disease.


Assuntos
Gadolínio/administração & dosagem , Insuficiência Cardíaca/diagnóstico por imagem , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Meios de Contraste/administração & dosagem , Coração/efeitos dos fármacos , Insuficiência Cardíaca/patologia , Humanos , Microcirculação/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Ratos , Espectrometria de Massa de Íon Secundário , Água/química
12.
Nanomedicine ; 14(6): 1787-1795, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778890

RESUMO

Ultrasound (US) imaging is a well-established diagnostic technique to image soft tissues in real time, while photoacoustic (PA) is an emerging imaging technique employed to collect molecular information. Integration of PA and US imaging provides complementary information enhancing diagnostic accuracy without employing ionizing radiations. The development of contrast agents able to combine PA and US features is pivotal to improve the significance of PAUS imaging and for PAUS-guided treatment of neoplasms. Here, we demonstrate in relevant ex-vivo models that disassembling passion fruit-like nano-architectures (pfNAs) can be employed in PAUS imaging. pfNAs are composed by silica nanocapsules comprising aggregates of commercial NIR-dyes-modified polymers and ultrasmall gold nanoparticles. The intrinsic US and PA features of pfNAs have been fully characterized and validated in tissue-mimicking materials and in ex vivo preparations. Moreover, the application of a multi-parametric approach has allowed the increase of information extrapolated from collected images for a fine texture analysis.


Assuntos
Sangue/metabolismo , Diagnóstico por Imagem/métodos , Ouro/química , Nanopartículas Metálicas/química , Passiflora/química , Técnicas Fotoacústicas , Polímeros/química , Ultrassonografia , Humanos
13.
Phys Chem Chem Phys ; 17(40): 26969-78, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26403358

RESUMO

In dynamic nuclear polarisation (DNP) experiments performed under static conditions at 1.4 K we show that the presence of 1 mM Gd(iii)-DOTAREM increases the (13)C polarisation and decreases the (13)C polarisation buildup time of (13)C-urea dissolved in samples containing water/DMSO mixtures with trityl radical (OX063) concentrations of 10 mM or higher. To account for these observations further measurements were carried out at 6.5 K, using a combined EPR and NMR spectrometer. At this temperature, frequency swept DNP spectra of samples with 5 or 10 mM OX063 were measured, with and without 1 mM Gd-DOTA, and again a (13)C enhancement gain was observed due to the presence of Gd-DOTA. These measurements were complemented by electron-electron double resonance (ELDOR) measurements to quantitate the effect of electron spectral diffusion (eSD) on the DNP enhancements and lineshapes. Simulations of the ELDOR spectra were done using the following parameters: (i) a parameter defining the rate of the eSD process, (ii) an "effective electron-proton anisotropic hyperfine interaction parameter", and (iii) the transverse electron spin relaxation time of OX063. These parameters, together with the longitudinal electron spin relaxation time, measured by EPR, were used to calculate the frequency profile of electron polarisation. This, in turn, was used to calculate two basic solid effect (SE) and indirect cross effect (iCE) DNP spectra. A properly weighted combination of these two normalized DNP spectra provided a very good fit of the experimental DNP spectra. The best fit simulation parameters reveal that the addition of Gd(iii)-DOTA causes an increase in both the SE and the iCE contributions by similar amounts, and that the increase in the overall DNP enhancements is a result of narrowing of the ELDOR spectra (increased electron polarisation gradient across the EPR line). These changes in the electron depolarisation profile are a combined result of shortening of the longitudinal and transverse electron spin relaxation times, as well as an increase in the eSD rate and in the effective electron-proton anisotropic hyperfine interaction parameter.


Assuntos
Compostos Heterocíclicos/química , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/química
14.
J Phys Chem A ; 119(10): 1885-93, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25686013

RESUMO

The intrinsic physicochemical properties of the sample formulation are the key factors for efficient hyperpolarization through dissolution dynamic nuclear polarization (dissolution-DNP). We provide a comprehensive characterization of the DNP process for Na-[1-(13)C]acetate selected as a model for non-self-glassing agents: the solid-state polarization dynamics of different formulations and the effect of the paramagnetic agent (trityl radical) on the pattern of polarization and the relaxation profile were extensively analyzed. We quantified the effects of the glassing agent and Gd(3+)-chelate on DNP performance. The results reported here describe the constraints of the acetate formulation useful for future studies in this field with non-self-glassing enriched molecules.


Assuntos
Acetatos/química , Vidro/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Ácido Pirúvico/química
15.
Acta Biomater ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871201

RESUMO

To study in vivo the bioactivity of biodegradable magnesium implants and other possible biomaterials, we are proposing a previously unexplored application of PET-CT imaging, using available tracers to follow soft tissue and bone remodelling and immune response in the presence of orthopaedic implants. Female Wistar rats received either implants (Ti6Al7Nb titanium or WE43 magnesium) or corresponding transcortical sham defects into the diaphyseal area of the femurs. Inflammatory response was followed with [18F]FDG and osteogenesis with [18F]NaF, over the period of 1.5 months after surgery. An additional pilot study with [68Ga]NODAGA-RGD tracer specific to αvß3 integrin expression was performed to follow the angiogenesis for one month. [18F]FDG tracer uptake peaked on day 3 before declining in all groups, with Mg and Ti groups exhibiting overall higher uptake compared to sham. This suggests increased cellular activity and tissue response in the presence of Mg during the initial weeks, with Ti showing a subsequent increase in tracer uptake on day 45, indicating a foreign body reaction. [18F]NaF uptake demonstrated the superior osteogenic potential of Mg compared to Ti, with peak uptake on day 7 for all groups. [68Ga]NODAGA-RGD pilot study revealed differences in tracer uptake trends between groups, particularly the prolonged expression of αvß3 integrin in the presence of implants. Based on the observed differences in the uptake trends of radiotracers depending on implant material, we suggest that PET-CT is a suitable modality for long-term in vivo assessment of orthopaedic biomaterial biocompatibility and underlying tissue reactions. STATEMENT OF SIGNIFICANCE: The study explores the novel use of positron emission tomography for the assessment of the influence that biomaterials have on the surrounding tissues. Previous related studies have mostly focused on material-related effects such as implant-associated infections or to follow the osseointegration in prosthetics, but the use of PET to evaluate the materials has not been reported before. The approach tests the feasibility of using repeated PET-CT imaging to follow the tissue response over time, potentially improving the methodology for adopting new biomaterials for clinical use.

16.
Diagnostics (Basel) ; 14(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786333

RESUMO

Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.

17.
Macromol Biosci ; : e2400013, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509742

RESUMO

The development of biosafe theranostic nanoplatforms has attracted great attention due to their multifunctional behavior, reduced potential toxicity, and improved long-term safety. When considering photoacoustic contrast agents and photothermal conversion tools, melanin and constructs like melanin are highly appealing due to their ability to absorb optical energy and convert it into heat. Following a sustainable approach, in this study, silver-melanin like-silica nanoplatforms are synthesized exploiting different bio-available and inexpensive phenolic acids as potential melanogenic precursors and exploring their role in tuning the final systems architecture. The UV-Vis combined with X-Ray Diffraction investigation proves metallic silver formation, while Transmission Electron Microscopy analysis reveals that different morphologies can be obtained by properly selecting the phenolic precursors. By looking at the characterization results, a tentative formation mechanism is proposed to explain how phenolic precursors' redox behavior may affect the nanoplatforms' structure. The antibacterial activity experiments showed that all synthesized systems have a strong inhibitory effect on Escherichia coli, even at low concentrations. Furthermore, very sensitive Photoacoustic Imaging capabilities and significant photothermal behavior under laser irradiation are exhibited. Finally, a marked influence of phenol nature on the final system architecture is revealed resulting in a significant effect on both biological and photoacoustic features of the obtained systems. These melanin-based hybrid systems exhibit excellent potential as triggerable nanoplatforms for various biomedical applications.

18.
J Med Chem ; 67(1): 17-37, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113353

RESUMO

Mitochondria dysfunctions are typical hallmarks of cardiac disorders (CDs). The multiple tasks of this energy-producing organelle are well documented, but its pathophysiologic involvement in several manifestations of heart diseases, such as altered electromechanical coupling, excitability, and arrhythmias, is still under investigation. The human 18 kDa translocator protein (TSPO) is a protein located on the outer mitochondrial membrane whose expression is altered in different pathological conditions, including CDs, making it an attractive therapeutic and diagnostic target. Currently, only a few TSPO ligands are employed in CDs and cardiac imaging. In this Perspective, we report an overview of the emerging role of TSPO at the heart level, focusing on the recent literature concerning the development of TSPO ligands used for fighting and imaging heart-related disease conditions. Accordingly, targeting TSPO might represent a successful strategy to achieve novel therapeutic and diagnostic strategies to unravel the fundamental mechanisms and to provide solutions to still unanswered questions in CDs.


Assuntos
Cardiopatias , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Membranas Mitocondriais/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Ligantes
19.
Eur J Nucl Med Mol Imaging ; 40(8): 1265-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674206

RESUMO

PURPOSE: The αvß3 integrin is expressed in angiogenic vessels and is a potential target for molecular imaging of evolving pathological processes. Its expression is upregulated in cancer lesions and metastases as well as in acute myocardial infarction (MI) as part of the infarct healing process. The purpose of our study was to determine the feasibility of a new imaging approach with a novel (68)Ga-2,2',2″-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA)-arginine-glycine-aspartic acid (RGD) construct to assess integrin expression in the evolving MI. METHODS: A straightforward labelling chemistry to attach the radionuclide (68)Ga to a NOTA-based chelating agent conjugated with a cyclic RGD peptidomimetic is described. Affinity for αvß3 integrin was assessed by in vitro receptor binding assay. The proof-of-concept in vivo studies combined the (68)Ga-NOTA-RGD with the flow tracer (13)N-NH3 imaging in order to obtain positron emission tomography (PET)/CT imaging of both integrin expression and perfusion defect at 4 weeks after infarction. Hearts were then processed for immunostaining of integrin ß3. RESULTS: NOTA-RGD conjugate displayed a binding affinity for αvß3 integrin of 27.9 ± 6.8 nM. (68)Ga-NOTA-RGD showed stability without detectable degradation or formation of by-products in urine up to 2 h following injection in the rat. MI hearts exhibited (68)Ga-NOTA-RGD uptake in correspondence to infarcted and border zone regions. The tracer signal drew a parallel with vascular remodelling due to ischaemia-induced angiogenesis as assessed by immunohistochemistry. CONCLUSION: As compared to similar imaging approaches using the (18)F-galacto-derivative, we documented for the first time with microPET/CT imaging the (68)Ga-NOTA-RGD derivative that appears eligible for PET imaging in animal models of vascular remodelling during evolving MI. The simple chemistry employed to synthesize the (68)Ga-based radiotracer may greatly facilitate its translation to a clinical setting.


Assuntos
Complexos de Coordenação/farmacocinética , Integrina alfaVbeta3/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Oligopeptídeos/química , Peptídeos Cíclicos/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Animais , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Masculino , Imagem Multimodal , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Ratos Wistar , Tomografia Computadorizada por Raios X
20.
Pharmaceutics ; 15(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37376087

RESUMO

Extracellular vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling. When released into circulation, EVs may convey their cargo and serve as intermediaries for intracellular communication, reaching nearby cells and possibly also distant organs. In cardiovascular biology, EVs released by activated or apoptotic endothelial cells (EC-EVs) disseminate biological information at short and long distances, contributing to the development and progression of cardiovascular disease and related disorders. The significance of EC-EVs as mediators of cell-cell communication has advanced, but a thorough knowledge of the role that intercommunication plays in healthy and vascular disease is still lacking. Most data on EVs derive from in vitro studies, but there are still little reliable data available on biodistribution and specific homing EVs in vivo tissues. Molecular imaging techniques for EVs are crucial to monitoring in vivo biodistribution and the homing of EVs and their communication networks both in basal and pathological circumstances. This narrative review provides an overview of EC-EVs, trying to highlight their role as messengers of cell-cell interaction in vascular homeostasis and disease, and describes emerging applications of various imaging modalities for EVs visualization in vivo.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa