Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Appl Clin Med Phys ; 23(6): e13603, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429102

RESUMO

PURPOSE: Calibration of a radiotherapy electronic portal imaging device (EPID) using the pixel-sensitivity-map (PSM) in place of the flood field correction improves the utility of the EPID for quality assurance applications. Multiple methods are available for determining the PSM and this study provides an evaluation to inform on which is superior. METHODS: Three different empirical methods ("Calvary Mater Newcastle" [CMN], "Varian," and "WashU") and a Monte Carlo-based method of PSM determination were investigated on a single Varian TrueBeam STx linear accelerator (linac) with an aS1200 EPID panel. PSM measurements were performed for each empirical method three successive times using the 6 MV beam. The resulting PSM from each method was compared to the Monte Carlo method as a reference using 2D percentage deviation maps and histograms plus crossplane profiles. The repeatability of generated PSMs was also assessed via 2D standard deviation (SD) maps and histograms. Additionally, the Beam-Response generated by removal of the PSM from a raw EPID image for each method was visually contrasted. Finally, the practicality of each method was assessed qualitatively and via the measured time required to acquire and export the required images. RESULTS: The median pixel-by-pixel percentage deviation between each of the empirical PSM methods and the Monte Carlo PSM was -0.36%, 0.24%, and 0.74% for the CMN, Varian, and WashU methods, respectively. Ninety-five percent of pixels were found to be repeatable to within -0.21%, 0.08%, 0.19%, and 0.35% (1 SD) for the CMN, Monte Carlo, Varian, and WashU methods, respectively. The WashU method was found to be quickest for data acquisition and export and the CMN the slowest. CONCLUSION: For the first time four methods of generating the EPID PSM have been compared in detail and strengths and weaknesses of each method have been identified. All methods are considered likely to be clinically acceptable and with similar practical requirements.


Assuntos
Radioterapia de Intensidade Modulada , Calibragem , Eletrônica , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
J Appl Clin Med Phys ; 23(6): e13602, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429117

RESUMO

PURPOSE: The EPID PSM is a useful EPID calibration method for QA applications. The dependence of the EPID PSM on the photon beam used to acquire it has been investigated in this study for the four available PSM methods. The aim is to inform upon the viability of applying a single PSM for all available photon beams to simplify PSM implementation and maintenance. METHODS: Four methods of PSM determination were each measured once in a single session on a single TrueBeam ® STx linac using 6 MV, 10 MV, 6 MV Flattening-Filter-Free (FFF), and 10 MV FFF photon beams. The resultant PSM was assessed for both intra- and inter-method beam dependence via comparison between PSM of the same method compared to the 6 MV PSM and via comparison between PSM of the same beam with the corresponding Monte Carlo PSM. Comparisons were performed via 2D percentage deviation plots with associated histograms, 1D crossplane profiles, and via mean, median, and standard deviation percentage deviation statistics. Generated beam-response was compared qualitatively via 1D crossplane profile comparison and quantitatively via symmetry assessment with comparison to the IC profiler device. RESULTS: The Varian method provided the most consistent PSM with varying photon beam, with median percent deviation from the 6 MV PSM within 0.14% for all other beams. Qualitatively, each method provided similar beam-response profiles. The measured beam-response symmetry agreed to within 0.2% between the Calvary Mater Newcastle (CMN) method and IC profiler, but agreement reduced to within 0.9% and 2.2% for the Varian and WashU methods. PSM percent deviation with Monte Carlo PSM was within 0.75% for all methods and beams. CONCLUSION: Results suggest that the PSM may be independent of photon beam to clinically relevant levels. The Varian method of PSM determination introduces the least beam dependence into the measured PSM.


Assuntos
Radioterapia de Intensidade Modulada , Eletrônica , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
3.
J Appl Clin Med Phys ; 19(6): 68-78, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30178521

RESUMO

Alignment of the On-Board Imager (OBI) X-ray tube is important for ensuring imaging to treatment isocenter coincidence, which in turn is important for accurate Image Guided Radiotherapy (IGRT). Varian introduced a new X-ray tube alignment procedure for the TrueBeam linac in software version 2.5 MR2 as part of the machine performance check (MPC) application. This study evaluated the new procedure against conventional methods and examined the clinical significance of X-ray tube misalignment. Long term stability and short term repeatability of MPC tube alignment was assessed as well as sensitivity of the method to setup error. Standard quality assurance tests expected to be sensitive to tube misalignment were performed before and after tube alignment. These tests included: IsoCal verification; MPC kV imager offset; Winston-Lutz: kV imaging to treatment/radiation isocenter coincidence; CBCT image QA using the Catphan phantom; and OBI image geometric accuracy and center pixel alignment. Tube alignment measurements were performed with MPC, the two-plate method, and wire-on-faceplate method. The X-ray tube was then realigned by approximately 1.01 mm in the tangential plane based upon MPC and the tube alignment and standard quality assurance measurements were repeated. The time taken for each tube alignment method was estimated. The MPC method of tube alignment was found to be repeatable, insignificantly sensitive to phantom setup error and quick and simple to perform. The standard QA tests were generally insensitive to the tube alignment change, possibly because of the IsoCal correction. However, reduction in the magnitude of IsoCal correction and MPC kV imager offset was recorded after tube alignment. There was also apparent improvement in CBCT image uniformity. The MPC procedure is recommended for X-ray tube alignment.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Software , Tomografia Computadorizada por Raios X/métodos , Raios X
4.
J Appl Clin Med Phys ; 19(5): 591-597, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30047209

RESUMO

Beam steering is the process of calibrating the angle and translational position with which a linear accelerator's (linac's) electron beam strikes the x-ray target with respect to the collimator rotation axis. The shape of the dose profile is highly dependent on accurate beam steering and is essential for ensuring correct delivery of the radiotherapy treatment plan. Traditional methods of beam steering utilize a scanning water tank phantom that makes the process user-dependent. This study is the first to provide a methodology for both beam angle steering and beam translational position steering based on EPID imaging of the beam and does not require a phantom. Both the EPID-based beam angle steering and beam translational steering methods described have been validated against IC Profiler measurement. Wide field symmetry agreement was found between the EPID and IC Profiler to within 0.06 ± 0.14% (1 SD) and 0.32 ± 0.11% (1 SD) for flattened and flattening-filter-free (FFF) beams, respectively. For a 1.1% change in symmetry measured by IC Profiler the EPID method agreed to within 0.23%. For beam translational position steering, the EPID method agreed with IC Profiler method to within 0.03 ± 0.05 mm (1 SD) at isocenter. The EPID-based methods presented are quick to perform, simple, accurate and could easily be integrated with the linac, potentially via the MPC application. The methods have the potential to remove user variability and to standardize the process of beam steering throughout the radiotherapy community.


Assuntos
Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Rotação
5.
Med Phys ; 37(4): 1459-67, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443467

RESUMO

PURPOSE: A major problem associated with amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) for transit dosimetry is the presence of a phosphor layer, which can introduce large deviations from water-equivalent behavior due to energy-dependent response and visible light scattering. In this study, an amorphous silicon EPID was modified to a direct detection configuration by removing the phosphor layer, and the accuracy of using it for transit dosimetry measurements was investigated for 6 and 18 MV treatment beams by comparison to ion-chamber in water measurements. METHODS: Solid water and copper were both evaluated as buildup materials. Using the optimum buildup thickness in each case, effects of changes in radiation field size, source to detector distance, and patient/phantom thickness were investigated by comparison to reference measurements made by an ionization chamber on the central axis. The off-axis response of the imager was also investigated by comparison of EPID image profiles to dose profiles obtained by a scanning ionization chamber in a water tank with various thicknesses of slab phantoms, and an anthropomorphic phantom in the beam using Gamma evaluation (3%, 3 mm criteria). The imaging characteristics of the direct EPID were investigated by comparison to a commercial EPID using QC3V phantom, and by taking images of an anthropomorphic pelvic phantom containing fiducial gold markers. RESULTS: Either 30 mm of solid water or 3.3 mm of copper were found to be the most suitable buildup thicknesses with solid water providing more accurate results. Using solid water buildup, the EPID response compared to the reference dosimeter within 2% for all conditions except phantom thicknesses larger than 25 cm in 6 MV beams, which was up to 6.5%. Gamma evaluation results comparing EPID profiles and reference ionization chamber profiles showed that for 6 and 18 MV beams, at least 91.8% and 90.9% of points had a Gamma <1 for all phantoms, respectively. But using copper buildup, the EPID response had more discrepancies from the ionization chamber reference measurements, including: More than 2% difference for small air gaps using 6 MV beams, up to 8% difference for phantom thicknesses larger than 25 cm in 6 MV beams, and large differences (up to 9.3%) for increasing phantom thicknesses in 18 MV beams. The percentage of points with Gamma <1 with copper buildup were at least 96.6% and 99.8% in 6 and 18 MV beams, respectively. CONCLUSIONS: The direct EPID performs as an ion-chamber detector for transit dosimetry applications in all geometries studied except for small discrepancies at 6 MV for thick phantoms. This can be ameliorated by the calibration of the EPID to dose at an intermediate phantom thickness. The major current limitation of the direct EPID is poor quality of images compared with the clinical configuration, which could be overcome by a method to interchange between imaging and dosimetry setups.


Assuntos
Fósforo/química , Radiometria/métodos , Silício/química , Antropometria/métodos , Calibragem , Cobre/química , Raios gama , Humanos , Processamento de Imagem Assistida por Computador , Íons , Pelve/patologia , Imagens de Fantasmas , Dosagem Radioterapêutica , Água/química
6.
Int J Radiat Oncol Biol Phys ; 93(5): 1144-53, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581150

RESUMO

PURPOSE: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. PATIENTS AND METHODS: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. RESULTS: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). CONCLUSIONS: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Osso e Ossos , Marcadores Fiduciais , Ouro , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia de Intensidade Modulada , Reto , Bexiga Urinária
7.
Phys Med Biol ; 57(15): N295-306, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22801089

RESUMO

In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.


Assuntos
Equipamentos e Provisões Elétricas , Radiometria/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Silício , Imagens de Fantasmas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa