Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 382(2): 457-69, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939298

RESUMO

Unlike humans, certain adult vertebrates such as newts and zebrafish possess extraordinary abilities to functionally regenerate lost appendages and injured organs, including cardiac muscle. Here, we present new evidence that a remodeled extracellular matrix (ECM) directs cell activities essential for cardiac muscle regeneration. Comprehensive mining of DNA microarrays and Gene Ontology term enrichment analyses for regenerating newt and zebrafish hearts revealed that distinct ECM components and ECM-modifying proteases are among the most significantly enriched genes in response to local injury. In contrast, data analyses for mammalian cardiac injury models indicated that inflammation and metabolic processes are the most significantly activated gene groups. In the regenerating newt heart, we show dynamic spatial and temporal changes in tenascin-C, hyaluronic acid, and fibronectin ECM distribution as early as 3 days postamputation. Linked to distinct matrix remodeling, we demonstrate a myocardium-wide proliferative response and radial migration of progenitor cells. In particular, we report dramatic upregulation of a regeneration-specific matrix in the epicardium that precedes the accumulation and migration of progenitor cells. For the first time, we show that the regenerative ECM component tenascin-C significantly increases newt cardiomyocyte cell cycle reentry in vitro. Thus, the engineering of nature-tested extracellular matrices may provide new strategic opportunities for the enhancement of regenerative responses in mammals.


Assuntos
Matriz Extracelular/metabolismo , Pericárdio/metabolismo , Salamandridae/fisiologia , Animais , Embrião não Mamífero , Fibronectinas/metabolismo , Ácido Hialurônico/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Tenascina/metabolismo , Peixe-Zebra/fisiologia
2.
PLoS One ; 7(12): e52375, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300656

RESUMO

The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.


Assuntos
Regeneração , Análise Serial de Tecidos , Animais , Citoesqueleto/metabolismo , Imunidade , Notophthalmus viridescens/imunologia , Notophthalmus viridescens/fisiologia , Especificidade de Órgãos , Reprodutibilidade dos Testes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa