Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843775

RESUMO

The quest for planar hypercoordinate atoms (phA) beyond six has predominantly focused on transition metals, with dodecacoordination being the highest reported thus far. Extending this bonding scenario to main-group elements, which typically lack d orbitals despite their larger atomic radius, has posed significant challenges. Intrigued by the potentiality of covalent bonding formation using the d orbitals of the heavier alkaline-earth metals (Ae = Ca, Sr, Ba), the so-called "honorary transition metals", we aim to push the boundaries of planar hypercoordination. By including rings formed by 12-15 atoms of boron-carbon and Ae centers, we propose a design scheme of 180 candidates with a phA. Further systematic screening, structural examination, and stability assessments identified 10 potential clusters with a planar hypercoordinate alkaline-earth metal (phAe) as the lowest-energy form. These unconventional structures embody planar dodeca-, trideca-, tetradeca-, and pentadecacoordinate atoms. Chemical bonding analyses reveal the important role of Ae d orbitals in facilitating covalent interactions between the central Ae atom and the surrounding boron-carbon rings, thereby establishing a new record for coordination numbers in the two-dimensional realm.

2.
Chemphyschem ; : e202400324, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728169

RESUMO

In this study, we elucidate the reaction mechanism for capturing CO2 with the ZnL1(MeOH) complex (L1 = diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazinatopyridine)) in a methanol solution, using density functional theory calculations. One pathway involves the protonation of ZnL1(MeOH) by methylcarbonic acid, followed by ligand exchange of MeOH with MeOCO2-. An alternative mechanism suggests a tautomerization between ZnL1(MeOH) and Zn(HL1)(OMe), followed by CO2 insertion. This latter pathway is energetically more favorable than the former and more complex than initially proposed. In fact, we unveiled that the solvent catalyzes tautomerization, as one explicit methanol molecule acts as a proton transfer agent. Then, Zn(HL1)(OMe) captures CO2, yielding a methylcarbonate bound to the metal center. The final step involves a rearrangement that leads to the cleavage of the Zn-O(Me)(COO) bond and the formation of a new Zn-O(COOMe) bond, along with the rotation of the methylcarbonate group. Furthermore, we evaluated the ligand basicity through the pKa calculated values of the Zn(II) complexes, the effects of varying the ligand from 4-methyl-thiosemicarbazone to 4-ethyl (L2), 4-phenethyl (L3), and 4-benzyl (L4) derivatives, and reversibility of the reaction in an argon environment.

3.
J Org Chem ; 89(4): 2459-2466, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38236016

RESUMO

This study explores the aromaticity of doubly [5]helicene-bridged (1,4)cyclophane and triply [5]helicene-bridged (1,3,5)cyclophane via calculations of the magnetic response and of electronic aromaticity indices. The primary objective is to assess the π-electron delocalization to determine whether they sustain global ring currents associated with π aromaticity. The molecules show local ring currents in the presence of an external magnetic field. The ring currents flow diatropically in the stacked six-membered rings and in the helicene arms. However, these π currents are not interconnected due to the discontinuity of the π delocalization at the C-C single bonds connecting the central six-membered rings to the helicene arms. Electronic indices suggest that the helicene-arm systems have significantly smaller electron delocalization than benzene. The reduction in the delocalization does not compromise their ability to exhibit ring currents in the presence of an external magnetic field. The analysis provides further evidence that the magnetic criteria yield a different degree of aromaticity for the helicene arms than obtained in the calculation of the electronic aromaticity indices. However, both approaches confirm that the studied molecules are not globally aromatic.

4.
Phys Chem Chem Phys ; 26(10): 8089-8093, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381157

RESUMO

In this study, we delved into the structure of B5H5 and questioned some of its accepted assumptions. By exploring the potential energy surface, we found a new three-dimensional structure as the global minimum. This finding is in contrast with the previously hypothesized planar and cage-like models. Our exploration extends to the kinetic stability of various B5H5 isomers, offering insights into the dynamic behavior of these molecules.

5.
Angew Chem Int Ed Engl ; 63(5): e202317848, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087836

RESUMO

When (4n +2) π-electrons are located in single planar ring, it conventionally qualifies as aromatic. According Hückel's rule, systems possessing ten π-electrons should be aromatic. Herein we report a series of D5h  Li6 E5 Li6 sandwich structures, representing the first global minima featuring ten π-electrons E5 10- ring (E=Si-Pb). However, these π-electrons localize as five π-lone-pairs rather than delocalized orbitals. The high symmetry structure achieved is a direct consequence of σ-aromaticity, particularly favored in elements from Si to Pb, resulting in a pronounced diatropic ring current flow that contributes to the enhanced stability of these systems.

6.
J Comput Chem ; 44(3): 159-167, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35297069

RESUMO

The interaction of ammonia with Ben (n < 1-10) clusters has been investigated by density functional theory and ab initio calculations. The main conclusion is that, regardless of the size of the Be cluster, neither the structure of ammonia nor that of the Be clusters are preserved due to a systematic dissociation of its NH bonds and a spontaneous H-shift toward the available Be atoms. This H migration not only leads to rather stable BeH bonds, but dramatically enhances the strength of the BeN bonds as well. Accordingly, the maximum stability is found for the interaction with the beryllium trimer, leading to a complex with three NBe and three BeH bonds. Another maximum in stability, although lower than that reached for n = 3, is found for the Be heptamer, since from n = 6, a new NBe bond is formed, so that complexes from n = 6 to n = 10 are characterized by the formation of a NBe4 moiety, whose stability reaches a maximum at n = 7. The bonding characteristics of the different species formed are analyzed by means of AIM, NBO, ELF and AdNDP approaches.

7.
J Comput Chem ; 44(3): 248-255, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35481883

RESUMO

Herein we show a density functional theory-based study performed on two recently predicted polymorphs of the BeH2 monolayer, α-BeH2 and ß-BeH2 . The α-BeH2 phase possesses an in-plane negative Poisson's ratio (NPR), introducing it into the unique group of auxetic materials. Our assessment delves into the linear-elastic and finite-strain regimes to understand both polymorphs' structural and mechanical responses to deformation. We find that the in-plane NPR is shown to be only parallel to the bonds in α-BeH2 and remains along the uniaxial tensile path. Concomitantly, an out-of-plane transition toward auxetic is also revealed in regions exhibiting conventional Poisson's ratios, making α-BeH2 a bidirectionally auxetic material. While phase transitions in ß-BeH2 are triggered at very short strains, α-BeH2 displays excellent elasticity against tension, superior to that of most currently known 2D materials.

8.
Chemistry ; 29(57): e202301338, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37498677

RESUMO

The study of C2 Al4 -/0 and C2 Al5 -/0 was conducted using anion photoelectron spectroscopy and quantum chemical computations. The present findings reveal that C2 Al4 - has a boat-like structure, with a single C2 unit surrounded by four aluminum atoms. In contrast, the neutral C2 Al4 species adopts a D2h planar structure with two planar tetracoordinate carbon (ptC) units, consistent with previous reports. Furthermore, the global minimum isomer of C2 Al5 - adopts a D3h symmetry, where the C2 unit interacts with five aluminum atoms. It was also found that a lower symmetry structure of C2 Al5 - , where all five aluminum atoms are located on the same side of the C2 unit, albeit slightly higher in energy compared to the D3h structure. These computations show that the D3h structure of C2 Al5 - is highly stable, exhibiting a large HOMO-LUMO gap.

9.
Chemphyschem ; 24(2): e202200582, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36198655

RESUMO

In this work, we analyze the interactions between two or three hydrogen halide molecules and the same number of water moieties through a systematic exploration of their potential energy surfaces. Our results indicate that the most stable HF and HCl aggregates do not experience dissociation of any of the acid fragments, even with three water molecules. In contrast, in the HBr and HI clusters, one of the acid fragments does dissociate. While the global minimum of (HBr)3 (H2 O)3 is a hydrogen-bridged bihalide anion (BrHBr- ), which is persistent at temperatures up to 203 K, the lowest energy structure of (HI)3 (H2 O)3 has a separated ion pair, but the motif with a bihalide anion (IHI- ) is only 0.2 kcal mol-1 above the global minimum. Among the more stable structures is a broad spectrum of contacts, including water⋯water, HX⋯water, and HX⋯HX hydrogen bonds, halogen bonds, ionic and long-range X⋯H contacts.

10.
Chemphyschem ; 24(4): e202200601, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36264712

RESUMO

In this work, we explore, using high-level calculations, the ability of BH4 + to interact with noble gases. The He system is energetically unstable, while the Ne system could only be observed at cryogenic temperatures. In the case of the Ar, Kr and Xe systems, all are energetically stable, even at room temperature. The different chemical bond descriptors reveal a covalent character between B and the noble gas from Ar to Rn. However, this interaction gradually weakens the multicentric bond between the boron atom and the H2 fragment. Thus, although BH4 Rn+ exhibits a strong covalent bond, it tends to dissociate at room temperature into BH2 Rn+ +H2 .

11.
Phys Chem Chem Phys ; 25(48): 32922-32930, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018412

RESUMO

This work delves into the bonding nature of the pentagonal-pyramidal benzene and hexamethylbenzene dications, C6R62+ (R = H and CH3), which contain a hexacoordinate carbon. The study employs a range of methodologies to analyze a series of scalar fields, including electron density, electron localization function, local momentum representation, and the evaluation of the Coulomb hole through information theory-derived functions. The findings unveil that electron density undergoes transfer from the pentagonal ring to the apical group. As a result, the base of the complex accumulates the positive charge. Moreover, an extended electron density domain emerges between the carbon pentagon and the apical carbon atom. This phenomenon is related to the molecular orbitals with a dipolar character aligned with the principal axis of the molecule. The results also indicate an electron density polarization towards the apical carbon, coupled with an exclusion of electron density surrounding both the apical carbon and the lower portion of the pentagonal ring. These provide valuable insights into the complex bonding nature of hexacoordinate carbon and its implications for organic chemistry.

12.
Phys Chem Chem Phys ; 25(30): 20759, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489011

RESUMO

Correction for 'Structure and bonding of molecular stirrers with formula B7M2- and B8M2 (M = Zn, Cd, Hg)' by Rui Yu et al., Phys. Chem. Chem. Phys., 2020, 22, 12312-12320, https://doi.org/10.1039/D0CP01603A.

13.
Chem Soc Rev ; 51(3): 1098-1123, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029622

RESUMO

In the last decades, experimental techniques in conjunction with theoretical analyses have revealed the surprising structural diversity of boron clusters. Although the 2D to 3D transition thresholds are well-established, there is no certainty about the factors that determine the geometry adopted by these systems. The structural transformation induced by doping usually yields a minimum energy structure with a boron skeleton entirely different from that of the bare cluster. This review summarizes those clusters no larger than 40 boron atoms where one or two dopants show a radical transformation of the structure. Although the structures of these systems are not easy to predict, they often adopt familiar shapes such as umbrella-like, wheel, tubular, and cages in various cases.

14.
Angew Chem Int Ed Engl ; 62(31): e202304997, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268596

RESUMO

Planar boron clusters have often been regarded as "π-analogous" to aromatic arenes because of their similar delocalized π-bonding. However, unlike arenes such as C5 H5 - and C6 H6 , boron clusters have not previously shown the ability to form sandwich complexes. In this study, we present the first sandwich complex involving beryllium and boron, B7 Be6 B7 . The global minimum of this combination adopts a unique architecture having a D6h geometry, featuring an unprecedented monocyclic Be6 ring sandwiched between two quasi-planar B7 motifs. The thermochemical and kinetic stability of B7 Be6 B7 can be attributed to strong electrostatic and covalent interactions between the fragments. Chemical bonding analysis shows that B7 Be6 B7 can be considered as a [B7 ]3- [Be6 ]6+ [B7 ]3- complex. Moreover, there is a significant electron delocalization within this cluster, supported by the local diatropic contributions of the B7 and Be6 fragments.

15.
Phys Chem Chem Phys ; 24(20): 12158-12166, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543541

RESUMO

Orbital contributions to the magnetic response depend on the method used to compute them. Here, we show that dissecting nuclear magnetic shielding tensors using natural localized molecular orbitals (NLMOs) leads to anomalous core contributions. The arbitrariness of the assignment might significantly affect the interpretation of the magnetic response of nonplanar molecules such as C60 or [14]helicene and the assessment of their aromatic character. We solve this problem by computing the core- and σ-components of the induced magnetic field (and NICS) and the magnetically induced current density by removing the valence electrons (RVE). We estimate the core contributions to the magnetic response by performing calculations on the corresponding highly charged molecules, such as C6H630+ for benzene, using gauge-including atomic orbitals and canonical molecular orbitals (CMOs). The orbital contributions to nuclear magnetic shielding tensors are usually estimated by employing a natural chemical shielding (NCS) analysis in NLMO or CMO bases. The RVE approach shows that the core contribution to the magnetic response is small and localized at the nuclei, contrary to what NCS calculations suggest. This may lead to a completely incorrect interpretation of the magnetic σ-orbital response of nonplanar structures, which may play a major role in the overall magnetic shielding of the system. The RVE approach is thus a simple and inexpensive way to determine the magnetic response of the core- and σ-electrons.

16.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364234

RESUMO

We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al4 square facing a B3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B3 triangle at the top of the Al4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B3 triangle, show its nearly free rotation on the Al4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system.


Assuntos
Simulação de Dinâmica Molecular
17.
Angew Chem Int Ed Engl ; 61(42): e202208152, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36028732

RESUMO

A new class of beryllium-boron clusters, beryllo-borospherene, is described herein theoretically. When beryllium is gradually added to the B12 motif, it undergoes drastic structural modifications. The global minimum of the Be4 B12 + cluster is an Archimedean beryllo-borospherene in a 2 A1 electronic ground state, composed of four boron triangles linked at each corner, resulting in a truncated tetrahedron with four B6 rings capped with four beryllium atoms. Beryllium forms strong bonding with the boron clusters through strong electrostatic and covalent interactions. For instance, the bonding between a beryllium atom and Be3 B12 unit is best described as a Be+ fragment in a 2 P excited state forming a strong and polarized electron-sharing bond with Be3 B12 , followed by several dative interactions by employing its vacant s, p, and very high-lying d orbitals. Counterintuitively, for an s-block element, the p orbitals of beryllium are the most crucial atomic orbitals for bonding rather than s orbitals.

18.
Chemistry ; 27(67): 16701-16706, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617347

RESUMO

After exploring the potential energy surfaces of Mm CE2 p (E=S-Te, M=Li-Cs, m=2, 3 and p=m-2) and Mn CE3 q (E=S-Te, M=Li-Cs, n=1, 2, q=n-2) combinations, we introduce 38 new global minima containing a planar hypercoordinate carbon atom (24 with a planar tetracoordinate carbon and 14 with a planar pentacoordinate carbon). These exotic clusters result from the decoration of V-shaped CE2 2- and Y-shaped CE3 2- dianions, respectively, with alkali counterions. All these 38 systems fulfill the geometrical and electronic criteria to be considered as true planar hypercoordinate carbon systems. Chemical bonding analyses indicate that carbon is covalently bonded to chalcogens and ionically connected to alkali metals.

19.
J Phys Chem A ; 125(26): 5753-5764, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161099

RESUMO

The pseudo-π model yields current densities and induced magnetic fields that mimic the π-component, allowing investigations of large molecular structures, whether they are planar or not, at a low computational cost but with high accuracy. Herein the π-contribution to the magnetically induced current densities and induced magnetic fields of large planar molecules and nonplanar molecules (such as [10]cyclophenacene and chiral toroidal nanotubes C2016 and C2196) were computed using the pseudo-π model with the gauge-including magnetically induced currents method. Additionally, we provide a way to determine the π-component of the ring-current strengths, which can be used for assessing the aromatic character of large carbon molecules.

20.
J Phys Chem A ; 125(14): 3009-3014, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33797250

RESUMO

The exhaustive exploration of the potential energy surfaces of CE2M2 (E = Si-Pb; M = Li and Na) revealed seven global minima containing a planar tetracoordinate carbon (ptC). The design, based on a π-localization strategy, resulted in a ptC with two double bonds forming a linear or a bent allene-type E═C═E motif. The magnetic response of the bent E═C═E fragments support a σ-aromaticity. The bonding analysis indicated that the ptCs form C-E covalent bonds and C-M electrostatic interactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa