Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Antimicrob Agents Chemother ; 67(5): e0009523, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37078871

RESUMO

Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk. The aim of this work was to determine the role of ABC transporter G2 (ABCG2) in clorsulon secretion into milk and the effect of ivermectin, a known ABCG2 inhibitor, on this process. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we report that clorsulon was transported in vitro by both transporter variants and that ivermectin inhibited its transport mediated by murine Abcg2 and human ABCG2. Wild-type and Abcg2-/- lactating female mice were used to carry out in vivo assays. The milk concentration and the milk-to-plasma ratio were higher in wild-type mice than in Abcg2-/- mice after clorsulon administration, showing that clorsulon is actively secreted into milk by Abcg2. The interaction of ivermectin in this process was shown after the coadministration of clorsulon and ivermectin to wild-type and Abcg2-/- lactating female mice. Treatment with ivermectin had no effect on the plasma concentrations of clorsulon, but the milk concentrations and milk-to-plasma ratios of clorsulon decreased in comparison to those with treatment without ivermectin, only in wild-type animals. Consequently, the coadministration of clorsulon and ivermectin reduces clorsulon secretion into milk due to drug-drug interactions mediated by ABCG2.


Assuntos
Anti-Helmínticos , Animais , Feminino , Humanos , Camundongos , Anti-Helmínticos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ivermectina/farmacologia , Lactação , Proteínas de Neoplasias/genética
2.
J Pineal Res ; 74(2): e12849, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562106

RESUMO

The ATP-binding cassette G2 (ABCG2) is an efflux transporter expressed in the apical membrane of cells from a large number of tissues, directly affecting bioavailability, tissue accumulation, and secretion into milk of both xenobiotics and endogenous compounds. The aim of this work was to characterize the role of ABCG2 in the systemic distribution and secretion into milk of melatonin and its main metabolites, 6-hydroxymelatonin, and 6-sulfatoxymelatonin. For this purpose, we first showed that these three molecules are transported by this transporter using in vitro transepithelial assays with MDCK-II polarized cells transduced with different species variants of ABCG2. Second, we tested the in vivo effect of murine Abcg2 in the systemic distribution of melatonin and its metabolites using wild-type and Abcg2-/- mice. Our results show that after oral administration of melatonin, the plasma concentration of melatonin metabolites in Abcg2-/-  mice was between 1.5 and 6-fold higher compared to the wild-type mice. We also evaluated in these animals differences in tissue accumulation of melatonin metabolites. The most relevant differences between both types of mice were found for small intestine and kidney (>sixfold increase for 6-sulfatoxymelatonin in Abcg2-/-  mice). Finally, melatonin secretion into milk was also affected by the murine Abcg2 transporter, with a twofold higher milk concentration in wild-type compared with Abcg2-/-  lactating female mice. In addition, melatonin metabolites showed a higher milk-to-plasma ratio in wild-type mice. Overall, our results show that the ABCG2 transporter plays a critical role in the biodistribution of melatonin and its main metabolites, thereby potentially affecting their biological and therapeutic activity.


Assuntos
Lactação , Melatonina , Feminino , Camundongos , Animais , Lactação/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Distribuição Tecidual , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camundongos Knockout
3.
Antimicrob Agents Chemother ; 66(7): e0006222, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736132

RESUMO

Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2) and albendazole 2-aminosulphone (ABZSO2-NH2). ABZSO and ABZSO2 are the main metabolites detected in plasma and all three are detected in milk. The ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter that is involved in the active secretion of several compounds into milk. Previous studies have reported that ABZSO was in vitro transported by ABCG2. The aim of this work is to correlate the in vitro interaction between ABCG2 and the other ABZ metabolites with their secretion into milk by this transporter. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we show that ABZSO2 and ABZSO2-NH2 are in vitro substrates of both. In vivo assays carried out with wild-type and Abcg2-/- lactating female mice demonstrated that secretion into milk of these ABZ metabolites was mediated by Abcg2. Milk concentrations and milk-to-plasma ratio were higher in wild-type compared to Abcg2-/- mice for all the metabolites tested. We conclude that ABZ metabolites are undoubtedly in vitro substrates of ABCG2 and actively secreted into milk by ABCG2.


Assuntos
Albendazol , Anti-Helmínticos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Albendazol/farmacologia , Animais , Anti-Helmínticos/farmacologia , Feminino , Humanos , Lactação , Mamíferos , Camundongos , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Drug Metab Dispos ; 47(5): 516-524, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858238

RESUMO

Flunixin meglumine is a nonsteroidal anti-inflammatory drug (NSAID) widely used in veterinary medicine. It is indicated to treat inflammatory processes, pain, and pyrexia in farm animals. In addition, it is one of the few NSAIDs approved for use in dairy cows, and consequently gives rise to concern regarding its milk residues. The ABCG2 efflux transporter is induced during lactation in the mammary gland and plays an important role in the secretion of different compounds into milk. Previous reports have demonstrated that bovine ABCG2 Y581S polymorphism increases fluoroquinolone levels in cow milk. However, the implication of this transporter in the secretion into milk of anti-inflammatory drugs has not yet been studied. The objective of this work was to study the role of ABCG2 in the secretion into milk of flunixin and its main metabolite, 5-hydroxyflunixin, using Abcg2(-/-) mice, and to investigate the implication of the Y581S polymorphism in the secretion of these compounds into cow milk. Correlation with the in vitro situation was assessed by in vitro transport assays using Madin-Darby canine kidney II cells overexpressing murine and the two variants of the bovine transporter. Our results show that flunixin and 5-hydroxyflunixin are transported by ABCG2 and that this protein is responsible for their secretion into milk. Moreover, the Y581S polymorphism increases flunixin concentration into cow milk, but it does not affect milk secretion of 5-hydroxyflunixin. This result correlates with the differences in the in vitro transport of flunixin between the two bovine variants. These findings are relevant to the therapeutics of anti-inflammatory drugs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/metabolismo , Clonixina/análogos & derivados , Leite/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antibacterianos/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Bovinos , Linhagem Celular , Clonixina/metabolismo , Cães , Feminino , Lactação/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Polimorfismo Genético/genética
5.
Anal Chem ; 90(20): 12152-12160, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30180556

RESUMO

Label-free differential scanning fluorimetry (DSF) is a relatively new method for evaluating the stability of proteins. It can be used as a screening tool for downstream applications such as crystallization. The method is attractive in that it requires miniscule quantities of proteins, it can be performed using intrinsic tryptophan and tyrosine fluorescence, and, with the right equipment, it is easy to perform. To date, the method has been used with proteins in liquid solutions and dispersions. It was of interest to determine if DSF could be used with membrane proteins in the lipid cubic phase (LCP), which increasingly is being used for crystallization in support of structure-function studies. The cubic phase is viscous. Furthermore, in coexistence with excess aqueous solution, as happens during crystallization trials, it can become turbid and scatter light. The concern was that these features may render the mesophase unsuitable for DSF analysis. However, using lysozyme and four integral membrane proteins we demonstrate that the method works with all tested proteins in solution and in the LCP. Of note is the observation that some of the test membrane proteins are more stable while others are less so in the mesophase. The method also works in ligand binding measurements. Thus, DSF should prove useful as an analytical tool for identifying host and additive lipids, detergents, precipitants and chemical probes that support the generation of quality crystals by the cubic phase method. Microscale thermophoresis was used to supplement the DSF study and was also shown to work with proteins in the mesophase. Measurements with lysozyme highlight the utility of the cubic mesophase as a model system in which to perform confinement studies.


Assuntos
Fluorometria , Lipídeos/química , Proteínas de Membrana/química , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Galinhas , Escherichia coli/química , Muramidase/química , Estabilidade Proteica , Pseudomonas aeruginosa/química , Solubilidade , Temperatura
6.
BMC Vet Res ; 14(1): 14, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334949

RESUMO

BACKGROUND: Flaxseed is the most common and rich dietary source of lignans and is an acceptable supply of energy for livestock. Flaxseed lignans are precursors of enterolignans, mainly enterolactone and enterodiol, produced by the rumen and intestinal microbiota of mammals and have many important biological properties as phytoestrogens. Potential food-drug interactions involving flaxseed may be relevant for veterinary therapy, and for the quality and safety of milk and dairy products. Our aim was to investigate a potential food-drug interaction involving flaxseed, to explore whether the inclusion of flaxseed in sheep diet affects concentration of the antimicrobial danofloxacin in milk. RESULTS: Increased concentrations of enterodiol and enterolactone were observed in sheep plasma and milk after 2 weeks of flaxseed supplementation (P < 0.05). However, enterolactone and enterodiol conjugates were not detected in milk. Milk danofloxacin pharmacokinetics showed that area under the curve (AUC)0-24, maximum concentration (Cmax) and AUC0-24 milk-to-plasma ratios were reduced by 25-30% in sheep fed flaxseed-enriched diets (P < 0.05). Our results demonstrate, therefore, that flaxseed-enriched diets reduce the amount of danofloxacin in sheep milk and enrich the milk content of lignan-derivatives. CONCLUSION: These findings highlight an effect of flaxseed-enriched diets on the concentration of antimicrobials in ruminant's milk, revealing the potential of these modified diets for the control of residues of antimicrobial drugs in milk.


Assuntos
Antibacterianos/farmacocinética , Dieta/veterinária , Linho , Fluoroquinolonas/farmacocinética , Leite/química , Ovinos/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/sangue , Ração Animal/análise , Animais , Antibacterianos/análise , Feminino , Fluoroquinolonas/análise , Interações Alimento-Droga , Lignanas/análise , Lignanas/sangue , Sementes
7.
J Biol Chem ; 291(40): 20962-20975, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27502274

RESUMO

It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.


Assuntos
Dineínas/química , Dineínas/metabolismo , Multimerização Proteica/fisiologia , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dineínas/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Ressonância Magnética Nuclear Biomolecular , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
8.
J Biol Chem ; 291(22): 11581-95, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27030110

RESUMO

Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P-2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P-2 position plus an acidic residue at the P-3 position (class II) can also occur, although interactions involving residues extending up to the P-7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P-3 and a Thr residue at P-2 By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier.


Assuntos
Claudina-3/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Domínios PDZ , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Claudina-3/genética , Polarização de Fluorescência , Imunofluorescência , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/citologia , Óxido Nítrico Sintase Tipo I/genética , Fragmentos de Peptídeos/genética , Ligação Proteica , Domínios Proteicos , Ratos , Homologia de Sequência de Aminoácidos
9.
Biochemistry ; 54(40): 6195-206, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26381710

RESUMO

The ATP binding cassette (ABC) transporters ABCG2 and ABCB1 perform ATP hydrolysis-dependent efflux of structurally highly diverse compounds, collectively called allocrites. Whereas much is known about allocrite-ABCB1 interactions, the chemical nature and strength of ABCG2-allocrite interactions have not yet been assessed. We quantified and characterized interactions of allocrite with ABCG2 and ABCB1 using a set of 39 diverse compounds. We also investigated potential allocrite binding sites based on available transporter structures and structural models. We demonstrate that ABCG2 binds its allocrites from the lipid membrane, despite their hydrophilicity. Hence, binding of allocrite to both transporters is a two-step process, starting with a lipid-water partitioning step, driven mainly by hydrophobic interactions, followed by a transporter binding step in the lipid membrane. We show that binding of allocrite to both transporters increases with the number of hydrogen bond acceptors in allocrites. Scrutinizing the transporter translocation pathways revealed ample hydrogen bond donors for allocrite binding. Importantly, the hydrogen bond donor strength is, on average, higher in ABCG2 than in ABCB1, which explains the higher measured affinity of allocrite for ABCG2. π-π stacking and π-cation interactions play additional roles in binding of allocrite to ABCG2 and ABCB1. With this analysis, we demonstrate that these membrane-mediated weak electrostatic interactions between transporters and allocrites allow for transporter promiscuity toward allocrites. The different sensitivities of the transporters to allocrites' charge and amphiphilicity provide transporter specificity. In addition, we show that the different hydrogen bond donor strengths in the two transporters allow for affinity tuning.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Linhagem Celular , Humanos , Ligação de Hidrogênio , Hidrólise , Camundongos , Modelos Moleculares , Proteínas de Neoplasias/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Conformação Proteica , Termodinâmica
10.
Mol Pharm ; 12(11): 4026-37, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26372856

RESUMO

Colocalized in membrane barriers, the ABC transporters ABCB1 and ABCG2 strongly contribute to multidrug resistance (MDR). Here we investigate the as yet unknown mechanisms of activation and inhibition of ABCG2. For this purpose we measured the ATPase activity of ABCG2 and ABCB1 as a function of allocrite concentration using a calibration set of 30 diverse compounds and a validation set of 23 compounds. We demonstrate that ABCG2 is activated at low and inhibited at high allocrite concentrations, yielding bell-shaped activity curves. With an ATP regeneration assay we prove that the inhibitory part is indeed due to a decrease in activity because of high allocrite load in the transporter. However, inhibition is only observed if the membrane solubility of allocrites is sufficiently high. The concentrations of half-maximum activation and inhibition are at least 10-fold lower for ABCG2 than for ABCB1. Because ABCG2 binds its allocrites with higher affinity than ABCB1, it can extract hydrophilic, nonamphiphilic, and highly charged compounds out of the lipid membrane, typically exhibiting low lipid-water partition coefficients, but is inhibited by hydrophobic, amphiphilic, and moderately charged compounds, with high lipid-water partition coefficients. In contrast, ABCB1 is barely interacting with hydrophilic compounds, but is activated by hydrophobic compounds. We show that hydrophobicity, amphiphilicity, and charge have a dual role; they predict, on the one hand, allocrites' lipid-water partition coefficient and, on the other hand, the transporters' preference for the chemical nature of allocrites. Parameters reflecting hydrophobicity, amphiphilicity, and charge are therefore sufficient for differentiating between allocrites, activators, and inhibitors of ABCB1 and ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Proteínas de Neoplasias/química , Preparações Farmacêuticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo
11.
Drug Metab Dispos ; 42(5): 943-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24568887

RESUMO

Lignans are phytoestrogens that are metabolized by the gut microbiota to enterodiol and enterolactone, the main biologically active enterolignans. Substantial interindividual variation in plasma concentration and urinary excretion of enterolignans has been reported, this being determined, at least in part, by the intake of lignan precursors, the gut microbiota, and the host's phase 2 conjugating enzyme activity. However, the role of ATP-binding cassette (ABC) transporters in the transport and disposition of enterolactone has not been reported so far. Active transport assays using parental and Madin-Darby canine kidney epithelial cells transduced with murine and human ABCG2 showed a significant increase in apically directed translocation of enterolactone in transduced cells, which was confirmed by using the selective ABCG2 inhibitor Ko143. In addition, enterolactone also inhibited transport of the antineoplastic agent mitoxantrone as a model substrate, with inhibition percentages of almost 40% at 200 µM for human ABCG2. Furthermore, the endogenous levels in plasma and milk of enterolactone in wild-type and Abcg2((-/-)) knockout female mice were analyzed. The milk/plasma ratio decreased significantly in the Abcg2((-/-)) phenotype, as compared with the wild-type mouse group (0.4 ± 0.1 as against 6.4 ± 2.6). This paper is the first to report that enterolactone is a transported substrate and therefore most probably a competitive inhibitor of ABCG2, which suggests it has a role in the interindividual variations in the disposition of enterolactone and its secretion into milk. The inhibitory activity identified provides a solid basis for further investigation in possible food-drug interactions.


Assuntos
4-Butirolactona/análogos & derivados , Transportadores de Cassetes de Ligação de ATP/fisiologia , Lignanas/farmacocinética , Leite/química , Proteínas de Neoplasias/fisiologia , 4-Butirolactona/sangue , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transporte Biológico , Dicetopiperazinas , Cães , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis , Lignanas/sangue , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Mitoxantrona/metabolismo , Mitoxantrona/farmacocinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Especificidade por Substrato
12.
Pharmacol Res ; 87: 87-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993496

RESUMO

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester). To define structure-activity relationships of the interaction of these molecules with Abcg2, in the present study we tested various peripherally restricted and non-restricted O-arylcarbamate FAAH inhibitors for their ability to serve as transport substrates in monolayer cultures of Madin-Darby Canine Kidney-II (MDCKII) cells over-expressing Abcg2. Surprisingly, we found that the majority of compounds tested - even those able to enter the CNS in vivo - were substrates for Abcg2 in vitro. Additional experiments in MDCKII cells overexpressing ABCB1 revealed that only those compounds that were dual substrates for ABCB1 and Abcg2 in vitro were also peripherally restricted in vivo. The extent of such restriction seems to depend upon other physicochemical features of the compounds, in particular the polar surface area. Consistent with these in vitro results, we found that URB937 readily enters the brain in dual knockout mice lacking both Abcg2 and Abcb1, whereas it is either partially or completely excluded from the brain of mice lacking either transporter alone. The results suggest that Abcg2 and Abcb1 act together to restrict the access of URB937 to the CNS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Amidoidrolases/antagonistas & inibidores , Canabinoides/farmacologia , Carbamatos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Amidoidrolases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/química , Carbamatos/química , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Relação Estrutura-Atividade
13.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675219

RESUMO

The ABCG2 transporter plays a key role in pharmacological and toxicological processes, affecting bioavailability, tissue accumulation and milk secretion of its substrates. This protein is expressed in several biological barriers acting as a protective mechanism against xenobiotic exposure by pumping out a broad range of compounds. However, its induced expression during lactation in alveolar cells of mammary gland represents a relevant route for active transport of unwanted chemicals into milk. This work aimed to characterize the involvement of ABCG2 in systemic exposure and milk secretion of the flukicide nitroxynil. Using MDCK-II cells overexpressing the transporter, we showed that nitroxynil is an in vitro substrate of different species variants of ABCG2. Moreover, using wild-type and Abcg2-/- mice, we showed that murine Abcg2 clearly affects plasma levels of nitroxynil. We also reported differences in nitroxynil accumulation in several tissues, with almost 2-fold higher concentration in kidney, small intestine and testis of Abcg2-/- mice. Finally, we proved that nitroxynil secretion into milk was also affected by Abcg2, with a 1.9-fold higher milk concentration in wild-type compared with Abcg2-/- mice. We conclude that ABCG2 significantly impacts nitroxynil biodistribution by regulating its passage across biological barriers.

14.
Environ Toxicol Pharmacol ; 107: 104421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493880

RESUMO

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics. Therefore, the aim of this work was to characterize the role of ABCG2 in the in vitro transport and secretion into milk of 5-hydroxythiabendazole (5OH-TBZ), the main TBZ metabolite. Using MDCK-II polarized cells transduced with several species variants of ABCG2, we first demonstrated that 5OH-TBZ is efficiently in vitro transported by ABCG2. Subsequently, using Abcg2 knockout mice, we demonstrated that 5OH-TBZ secretion into milk was affected by Abcg2, with a more than 2-fold higher milk concentration and milk to plasma ratio in wild-type mice compared to their Abcg2-/- counterpart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Leite , Tiabendazol , Animais , Feminino , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lactação , Leite/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tiabendazol/química , Tiabendazol/metabolismo , Xenobióticos , Cães
15.
Chem Biol Interact ; 398: 111117, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906501

RESUMO

Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO2)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2-/- mice. Liquid chromatography coupled with a tandem mass spectrometer (LC-MS/MS) was used for the analysis in a 10-min run time using positive-mode atmospheric pressure electrospray ionization (ESI+) and multiple reaction monitoring (MRM) scanning. For the primary metabolite tested, milk concentrations were 1.8-fold higher in wild-type mice than Abcg2-/- female lactating mice (P = 0.042) after intravenous administration of MNP. Finally, despite the lack of a difference between groups, we investigated potential differences in MNP and MNPSO2's plasma and tissue accumulation levels between wild-type and Abcg2-/- male mice. In this study, we demonstrated that MNPSO2 milk levels were affected by Abcg2, with potential pharmacological and toxicological consequences, contributing to the undesirable xenobiotic residues in milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anti-Helmínticos , Leite , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Masculino , Leite/química , Leite/metabolismo , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/metabolismo , Anti-Helmínticos/sangue , Camundongos Knockout , Distribuição Tecidual , Espectrometria de Massas em Tandem
16.
Drug Metab Dispos ; 41(3): 546-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23230133

RESUMO

The bovine adenosine triphosphate-binding cassette transporter G2 (ABCG2/breast cancer resistance protein) polymorphism Tyr581Ser (Y581S) has recently been shown to increase in vitro transepithelial transport of antibiotics. Since this transporter has been extensively related to the active secretion of drugs into milk, the potential in vivo effect of this polymorphism on secretion of xenobiotics in livestock could have striking consequences for milk production, the dairy industry, and public health. Our purpose was to study the in vivo effect of this polymorphism on the secretion of danofloxacin, a widely used veterinary antibiotic, into milk. Danofloxacin (1.25 mg/kg) was administered to six Y/Y 581 homozygous and six Y/S 581 heterozygous lactating cows, and plasma and milk samples were collected and analyzed by high-performance liquid chromatography. No differences were found in the pharmacokinetic parameters of danofloxacin in plasma between the two groups of animals. In contrast, Y/S heterozygous cows showed a 2-fold increase in danofloxacin levels in milk. In addition, the pharmacokinetic elimination parameters, mean residence time and elimination half-life, were significantly lower in the milk of the animals carrying the Y/S polymorphism. These in vivo results are in agreement with our previously published in vitro data, which showed a greater capacity of the S581 variant in accumulation assays, and demonstrate, for the first time, an important effect of the Y581S single-nucleotide polymorphism on antibiotic secretion into cow milk. These findings could be extended to other ABCG2 substrates, and may be relevant for the treatment of mastitis and for the design of accurate and novel strategies to handle milk residues.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética , Lactação , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Área Sob a Curva , Bovinos , Cromatografia Líquida de Alta Pressão , Feminino , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/sangue , Contaminação de Alimentos , Meia-Vida , Heterozigoto , Homozigoto , Injeções Intramusculares , Taxa de Depuração Metabólica , Fenótipo
17.
Front Vet Sci ; 10: 1268658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929285

RESUMO

In veterinary field, drug exposure during milk production in dairy cattle is considered a major health problem which concerns dairy consumers. The induced expression of the ABC transporter G2 (ABCG2) in the mammary gland during lactation plays a significant role in the active secretion of many compounds into milk. The main objective of this study was to determine the involvement of ABCG2 in the secretion into milk of the antiparasitic clorsulon in sheep as well as the possible effect of the coadministration of model ABCG2 inhibitors such as macrocyclic lactones on this process. Cells transduced with the ovine variant of ABCG2 were used to carry out in vitro transepithelial transport assays in which we showed that clorsulon is a substrate of the ovine transporter. In addition, ivermectin and abamectin significantly inhibited clorsulon transport mediated by ovine ABCG2. In vivo interactions were studied in Assaf sheep after coadministration of clorsulon (in DMSO, 2 mg/kg, s.c.) with ivermectin (Ivomec®, 0.2 mg/kg, s.c.) or abamectin (in DMSO, 0.2 mg/kg, s.c.). After ivermectin and abamectin treatment, no relevant statistically significant differences in plasma levels of clorsulon were reported between the experimental groups since there were no differences in the area under the plasma concentration-curve (AUC) between clorsulon treatment alone and coadministration with macrocyclic lactones. With regard to milk, total amount of clorsulon, as percentage of dose excreted, did not show statistically significant differences when macrocyclic lactones were coadministered. However, the AUC for clorsulon significantly decreased (p < 0.05) after coadministration with ivermectin (15.15 ± 3.17 µg h/mL) and abamectin (15.30 ± 3.25 µg h/mL) compared to control group (20.73 ± 4.97 µg h/mL). Moreover, milk parameters such as half-life (T1/2) and mean residence time (MRT) were significantly lower (p < 0.05) after coadministration of macrocyclic lactones. This research shows that the milk pharmacokinetics of clorsulon is affected by the coadministration of ABCG2 inhibitors, reducing drug persistence in milk.

18.
Toxicol Lett ; 380: 23-30, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011773

RESUMO

ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.


Assuntos
Praguicidas , Masculino , Feminino , Animais , Ovinos , Humanos , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Praguicidas/toxicidade , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carneiro Doméstico/metabolismo , Proteínas de Neoplasias/metabolismo
19.
Neuropharmacology ; 240: 109712, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689260

RESUMO

Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.

20.
Antimicrob Agents Chemother ; 56(7): 3535-43, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508302

RESUMO

ABCG2/BCRP is an ATP-binding cassette transporter that extrudes compounds from cells in the intestine, liver, kidney, and other organs, such as the mammary gland, affecting pharmacokinetics and milk secretion of antibiotics, anticancer drugs, and other compounds and mediating drug-drug interactions. In addition, ABCG2 expression in cancer cells may directly cause resistance by active efflux of anticancer drugs. The development of ABCG2 modulators is critical in order to improve drug pharmacokinetic properties, reduce milk secretion of xenotoxins, and/or increase the effective intracellular concentrations of substrates. Our purpose was to determine whether the anthelmintic triclabendazole (TCBZ) and its main plasma metabolites triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO(2)) inhibit ABCG2 activity. ATPase assays using human ABCG2-enriched membranes demonstrated a clear ABCG2 inhibition exerted by these compounds. Mitoxantrone accumulation assays using murine Abcg2- and human ABCG2-transduced MDCK-II cells confirmed that TCBZSO and TCBZSO(2) are ABCG2 inhibitors, reaching inhibitory potencies between 40 and 55% for a concentration range from 5 to 25 µM. Transepithelial transport assays of ABCG2 substrates in the presence of both TCBZ metabolites at 15 µM showed very efficient inhibition of the Abcg2/ABCG2-mediated transport of the antibacterial agents nitrofurantoin and danofloxacin. TCBZSO administration also inhibited nitrofurantoin Abcg2-mediated secretion into milk by more than 2-fold and increased plasma levels of the sulfonamide sulfasalazine by more than 1.5-fold in mice. These results support the potential role of TCBZSO and TCBZSO(2) as ABCG2 inhibitors to participate in drug interactions and modulate ABCG2-mediated pharmacokinetic processes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anti-Helmínticos/farmacologia , Benzimidazóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cães , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Sulfóxidos/farmacologia , Triclabendazol
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa