RESUMO
Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input's statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons' sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.
Assuntos
Ritmo Gama/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/citologia , Ritmo Teta/fisiologia , Animais , Feminino , Masculino , Camundongos , Rede Nervosa/fisiologia , Técnicas de Patch-ClampRESUMO
Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 µJ and 100 µs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.
Assuntos
Channelrhodopsins/biossíntese , Dependovirus , Expressão Gênica , Neurônios/metabolismo , Optogenética , Gânglio Espiral da Cóclea/metabolismo , Transdução Genética , Animais , Tronco Encefálico/metabolismo , Channelrhodopsins/genética , Potenciais Evocados Auditivos , Células HEK293 , Humanos , Camundongos , Ratos , Ratos WistarRESUMO
Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.