Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2321408121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976730

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker ß-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.


Assuntos
Neuritos , Receptores Androgênicos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Neuritos/metabolismo , Ratos , Células PC12 , Senescência Celular , Peptídeos/metabolismo , Humanos , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Mutação , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia
2.
J Biol Chem ; 300(5): 107246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556081

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.


Assuntos
Di-Hidrotestosterona , Peptídeos , Multimerização Proteica , Receptores Androgênicos , Animais , Humanos , Camundongos , Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Ratos , Linhagem Celular
3.
J Neurosci Res ; 102(1): e25278, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284836

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an X-linked disorder that affects males who inherit the androgen receptor (AR) gene with an abnormal CAG triplet repeat expansion. The resulting protein contains an elongated polyglutamine (polyQ) tract and causes motor neuron degeneration in an androgen-dependent manner. The precise molecular sequelae of SBMA are unclear. To assist with its investigation and the identification of therapeutic options, we report here a new model of SBMA in Drosophila melanogaster. We generated transgenic flies that express the full-length, human AR with a wild-type or pathogenic polyQ repeat. Each transgene is inserted into the same safe harbor site on the third chromosome of the fly as a single copy and in the same orientation. Expression of pathogenic AR, but not of its wild-type variant, in neurons or muscles leads to consistent, progressive defects in longevity and motility that are concomitant with polyQ-expanded AR protein aggregation and reduced complexity in neuromuscular junctions. Additional assays show adult fly eye abnormalities associated with the pathogenic AR species. The detrimental effects of pathogenic AR are accentuated by feeding flies the androgen, dihydrotestosterone. This new, robust SBMA model can be a valuable tool toward future investigations of this incurable disease.


Assuntos
Atrofia Bulboespinal Ligada ao X , Drosophila , Adulto , Humanos , Masculino , Animais , Drosophila melanogaster , Androgênios , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Muscular
4.
Bioconjug Chem ; 29(4): 1276-1282, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29451775

RESUMO

Huntington's disease (HD) is an autosomal-dominant neurodegenerative genetic disorder caused by CAG repeat expansion in exon 1 of the HTT gene. Expression of the mutant gene results in the production of a neurotoxic polyglutamine (polyQ)-expanded huntingtin (Htt) protein. Clinical trials of knockdown therapy of mutant polyglutamine-encoding HTT mRNA in Huntington's disease (HD) have begun. To measure HTT mRNA knockdown effectiveness in human cells, we utilized a fluorescent hybridization imaging agent specific to the region encompassing the human HTT mRNA initiation codon. We designed, synthesized, purified, and characterized Cal560-spacer-peptide nucleic acid (PNA)-spacer-IGF1 tetrapeptides. The human HTT PNA 12mer complement was CATGGCGGTCTC, while the rat htt equivalent 12mer contained the sequence CATGaCGGcCTC, with two bases differing from the human sequence. The cyclized IGF1 tetrapeptide fragment d(CSKC) that promotes IGF1 receptor-mediated endocytosis was bonded to the C-terminus. We tested the reliability of HTT mRNA imaging with Cal560-spacer-peptide nucleic acid (PNA)-spacer-IGF1 tetrapeptides in human embryonic kidney (HEK) 293T cells that express endogenous HTT and IGF1 receptor. By qPCR, we quantitated HTT mRNA in HEK293T cells with and without HTT mRNA knockdown by three different siRNAs. By confocal fluorescence imaging, we quantitated the accumulation of fluorescent HTT hybridization agent in the same cells. A rat homologue differing from the human sequence by two bases showed negligible fluorescence. qPCR indicated 86 ± 5% knockdown of HTT mRNA by the most effective siRNA. Similarly, Cal560- HTT PNA-peptide fluorescence intensity indicated 69 ± 6% reduction in HTT mRNA. We concluded that the fluorescence hybridization method correlates with the established qPCR method for quantitating HTT mRNA knockdown by siRNA in HEK293T cells, with a Pearson correlation coefficient of 0.865 for all three siRNA sequences. These results will enable real time imaging and quantitation of HTT mRNA in animal models of HD.


Assuntos
Proteína Huntingtina/genética , Imagem Óptica/métodos , Ácidos Nucleicos Peptídicos/química , Interferência de RNA , RNA Mensageiro/análise , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Modelos Moleculares , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos
5.
J Biol Chem ; 290(20): 12572-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25795778

RESUMO

Proteolysis of polyglutamine-expanded proteins is thought to be a required step in the pathogenesis of several neurodegenerative diseases. The accepted view for many polyglutamine proteins is that proteolysis of the mutant protein produces a "toxic fragment" that induces neuronal dysfunction and death in a soluble form; toxicity of the fragment is buffered by its incorporation into amyloid-like inclusions. In contrast to this view, we show that, in the polyglutamine disease spinal and bulbar muscular atrophy, proteolysis of the mutant androgen receptor (AR) is a late event. Immunocytochemical and biochemical analyses revealed that the mutant AR aggregates as a full-length protein, becoming proteolyzed to a smaller fragment through a process requiring the proteasome after it is incorporated into intranuclear inclusions. Moreover, the toxicity-predicting conformational antibody 3B5H10 bound to soluble full-length AR species but not to fragment-containing nuclear inclusions. These data suggest that the AR is toxic as a full-length protein, challenging the notion of polyglutamine protein fragment-associated toxicity by redefining the role of AR proteolysis in spinal and bulbar muscular atrophy pathogenesis.


Assuntos
Transtornos Musculares Atróficos/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Animais , Camundongos , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Células PC12 , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Receptores Androgênicos/genética
6.
Hum Mol Genet ; 23(5): 1376-86, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24150846

RESUMO

Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Transtornos Musculares Atróficos/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Musculares Atróficos/metabolismo , Peptídeos/genética , Condicionamento Físico Animal , Receptores Androgênicos/genética
7.
Nat Chem Biol ; 9(2): 112-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23222885

RESUMO

We sought new strategies to reduce amounts of the polyglutamine androgen receptor (polyQ AR) and achieve benefits in models of spinobulbar muscular atrophy, a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the heat shock protein 90 (Hsp90)- and Hsp70-based chaperone machinery, but mechanisms regulating the protein's turnover are incompletely understood. We demonstrate that overexpression of Hsp70 interacting protein (Hip), a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of spinobulbar muscular atrophy. These findings highlight the therapeutic potential of allosteric regulators of Hsp70 and provide new insights into the role of the chaperone machinery in protein quality control.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/química , Animais , Relação Dose-Resposta a Droga , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Drosophila , Feminino , Células HEK293 , Células HeLa , Humanos , Concentração Inibidora 50 , Modelos Químicos , Chaperonas Moleculares/química , Transtornos Musculares Atróficos/metabolismo , Neurotoxinas/química , Células PC12 , Estrutura Terciária de Proteína , Proteínas/química , Piridinas/farmacologia , Ratos , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Tiazóis/farmacologia , Ubiquitinação
8.
Hum Mol Genet ; 21(19): 4225-36, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22736030

RESUMO

Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Proteínas de Transporte/metabolismo , Reparo do DNA , Instabilidade Genômica , Proteínas Nucleares/metabolismo , Peptídeos/genética , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Androgênicos/genética
9.
Nat Med ; 13(3): 348-53, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17334372

RESUMO

Motor neuron degeneration resulting from the aggregation of the androgen receptor with an expanded polyglutamine tract (AR-polyQ) has been linked to the development of spinal and bulbar muscular atrophy (SBMA or Kennedy disease). Here we report that adding 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) disrupts the interaction between AR and its coregulators, and also increases cell survival by decreasing AR-polyQ nuclear aggregation and increasing AR-polyQ degradation in cultured cells. Intraperitoneal injection of ASC-J9 into AR-polyQ transgenic SBMA mice markedly improved disease symptoms, as seen by a reduction in muscular atrophy. Notably, unlike previous approaches in which surgical or chemical castration was used to reduce SBMA symptoms, ASC-J9 treatment ameliorated SBMA symptoms by decreasing AR-97Q aggregation and increasing VEGF164 expression with little change of serum testosterone. Moreover, mice treated with ASC-J9 retained normal sexual function and fertility. Collectively, our results point to a better therapeutic and preventative approach to treating SBMA, by disrupting the interaction between AR and AR coregulators.


Assuntos
Curcumina/análogos & derivados , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/metabolismo , Fenótipo , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Curcumina/uso terapêutico , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética
10.
JCI Insight ; 9(7)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452174

RESUMO

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.


Assuntos
Atrofia Bulboespinal Ligada ao X , Camundongos , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , NAD/metabolismo , Proteômica , Músculos/metabolismo , Camundongos Transgênicos , Metabolismo Energético
11.
STAR Protoc ; 4(1): 101993, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36602900

RESUMO

Although PC12 cells are a valuable tool in neuroscience research, previously published PC12 cell differentiation techniques fail to consider the variability in differentiation rates between different PC12 cell strains and clonal variants. Here, we present a comprehensive protocol to differentiate PC12 cells into equivalent neurite densities through live-cell imaging for morphological, immunocytochemical, and biochemical analyses. We detail steps on optimized substrate coating, plating techniques, culture media, validation steps, and quantification techniques.


Assuntos
Diagnóstico por Imagem , Neuritos , Animais , Ratos , Células PC12 , Diferenciação Celular , Meios de Cultura
12.
iScience ; 26(8): 107375, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599829

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR.

13.
J Neurosci ; 31(48): 17425-36, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131404

RESUMO

Posttranslational protein modifications can play a major role in disease pathogenesis; phosphorylation, sumoylation, and acetylation modulate the toxicity of a variety of proteotoxic proteins. The androgen receptor (AR) is substantially modified, in response to hormone binding, by phosphorylation, sumoylation, and acetylation; these modifications might thus contribute to DHT-dependent polyglutamine (polyQ)-expanded AR proteotoxicity in spinal and bulbar muscular atrophy (SBMA). SIRT1, a nuclear protein and deacetylase of the AR, is neuroprotective in many neurodegenerative disease models. Our studies reveal that SIRT1 also offers protection against polyQ-expanded AR by deacetylating the AR at lysines 630/632/633. This finding suggested that nuclear AR acetylation plays a role in the aberrant metabolism and toxicity of polyQ-expanded AR. Subsequent studies revealed that the polyQ-expanded AR is hyperacetylated and that pharmacologic reduction of acetylation reduces mutant AR aggregation. Moreover, genetic mutation to inhibit polyQ-expanded AR acetylation of lysines 630/632/633 substantially decreased its aggregation and completely abrogated its toxicity in cell lines and motor neurons. Our studies also reveal one means by which the AR acetylation state likely modifies polyQ-expanded AR metabolism and toxicity, through its effect on DHT-dependent AR stabilization. Overall, our findings reveal a neuroprotective function of SIRT1 that operates through its deacetylation of polyQ-expanded AR and highlight the potential of both SIRT1 and AR acetylation as powerful therapeutic targets in SBMA.


Assuntos
Atrofia Muscular Espinal/genética , Receptores Androgênicos/genética , Sirtuína 1/genética , Acetilação , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Camundongos , Atrofia Muscular Espinal/metabolismo , Neurônios/metabolismo , Células PC12 , Transporte Proteico/genética , Ratos , Receptores Androgênicos/metabolismo , Sirtuína 1/metabolismo , Medula Espinal/metabolismo , Expansão das Repetições de Trinucleotídeos
14.
Front Mol Neurosci ; 15: 1020143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277484

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.

15.
Acta Neuropathol Commun ; 10(1): 97, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791011

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. We observed significantly increased NMJ and myofiber pathology in fast-twitch, glycolytic motor units of the TA and gastrocnemius compared to slow-twitch, oxidative motor units of the soleus, as seen by decreased pre- and post-synaptic membrane area, decreased pre- and post-synaptic membrane colocalization, increased acetylcholine receptor compactness, a decrease in endplate area and complexity, and deficits in neurofilament heavy chain. Our data also show evidence for metabolic dysregulation and myofiber atrophy that correlate with severity of NMJ pathology. We propose a model in which the dynamic communicative relationship between the motor neuron and muscle, along with the developmental subtype of the muscle, promotes motor unit subtype specific vulnerability, metabolic alterations, and NMJ pathology.


Assuntos
Atrofia Bulboespinal Ligada ao X , Doenças Neurodegenerativas , Animais , Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/patologia , Camundongos , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Doenças Neurodegenerativas/patologia , Junção Neuromuscular/metabolismo , Pressão , Língua/metabolismo
16.
J Biol Chem ; 285(46): 35567-77, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20826791

RESUMO

Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function.


Assuntos
Mutação , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Anilidas/farmacologia , Animais , Sítios de Ligação/genética , Western Blotting , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/patologia , Células Cultivadas , Di-Hidrotestosterona/farmacologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Nitrilas/farmacologia , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Androgênicos/química , Testosterona/farmacologia , Compostos de Tosil/farmacologia , Técnicas do Sistema de Duplo-Híbrido
17.
Hum Mol Genet ; 18(11): 1937-50, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19279159

RESUMO

The nucleus is the primary site of protein aggregation in many polyglutamine diseases, suggesting a central role in pathogenesis. In SBMA, the nucleus is further implicated by the critical role for disease of androgens, which promote the nuclear translocation of the mutant androgen receptor (AR). To clarify the importance of the nucleus in SBMA, we genetically manipulated the nuclear localization signal of the polyglutamine-expanded AR. Transgenic mice expressing this mutant AR displayed inefficient nuclear translocation and substantially improved motor function compared with SBMA mice. While we found that nuclear localization of polyglutamine-expanded AR is required for SBMA, we also discovered, using cell models of SBMA, that it is insufficient for both aggregation and toxicity and requires androgens for these disease features. Through our studies of cultured motor neurons, we further found that the autophagic pathway was able to degrade cytoplasmically retained expanded AR and represents an endogenous neuroprotective mechanism. Moreover, pharmacologic induction of autophagy rescued motor neurons from the toxic effects of even nuclear-residing mutant AR, suggesting a therapeutic role for autophagy in this nucleus-centric disease. Thus, our studies firmly establish that polyglutamine-expanded AR must reside within nuclei in the presence of its ligand to cause SBMA. They also highlight a mechanistic basis for the requirement for nuclear localization in SBMA neurotoxicity, namely the lack of mutant AR removal by the autophagic protein degradation pathway.


Assuntos
Autofagia , Citoplasma/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos , Androgênios/metabolismo , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Sinais de Localização Nuclear/genética , Peptídeos/genética , Transporte Proteico , Receptores Androgênicos/genética
18.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33170804

RESUMO

Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.


Assuntos
Atrofia Bulboespinal Ligada ao X/enzimologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Células PC12 , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
19.
Neurotherapeutics ; 16(4): 928-947, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31686397

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/terapia , Peptídeos/genética , Receptores Androgênicos/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Atrofia Bulboespinal Ligada ao X/diagnóstico , Ensaios Clínicos como Assunto/métodos , Humanos
20.
Sci Rep ; 9(1): 119, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644418

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Prior studies have highlighted the importance of AR nuclear localization in SBMA pathogenesis; therefore, in this study, we sought to determine the role of AR nuclear export in the pathological manifestations of SBMA. We demonstrate here that the nuclear export of polyQ-expanded AR is impaired, even prior to the formation of intranuclear inclusions of aggregated AR. Additionally, we find that promoting AR export with an exogenous nuclear export signal substantially reduces its aggregation and blocks hormone-induced toxicity. Moreover, we show that these protective effects are conferred by destabilization of the mutant protein due to an increase in proteasomal degradation of the cytoplasmic AR. Despite a growing body of evidence that global disruption of nucleo/cytoplasmic transport occurs in ALS and HD, our data suggest that no such global disruption occurs in models of SBMA; rather, AR-specific mechanisms, including reduced phosphorylation at Serine 650, are likely responsible for the impaired nuclear export of polyQ-expanded AR.


Assuntos
Atrofia Bulboespinal Ligada ao X/metabolismo , Núcleo Celular/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa