Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Pathog ; 18(12): e1010956, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36454879

RESUMO

In multiple system atrophy (MSA), the α-synuclein protein misfolds into a self-templating prion conformation that spreads throughout the brain, leading to progressive neurodegeneration. While the E46K mutation in α-synuclein causes familial Parkinson's disease (PD), we previously discovered that this mutation blocks in vitro propagation of MSA prions. Recent studies by others indicate that α-synuclein adopts a misfolded conformation in MSA in which a Greek key motif is stabilized by an intramolecular salt bridge between residues E46 and K80. Hypothesizing that the E46K mutation impedes salt bridge formation and, therefore, exerts a selective pressure that can modulate α-synuclein strain propagation, we asked whether three distinct α-synuclein prion strains could propagate in TgM47+/- mice, which express human α-synuclein with the E46K mutation. Following intracranial injection of these strains, TgM47+/- mice were resistant to MSA prion transmission, whereas recombinant E46K preformed fibrils (PFFs) transmitted neurological disease to mice and induced the formation of phosphorylated α-synuclein neuropathology. In contrast, heterotypic seeding following wild-type (WT) PFF-inoculation resulted in preclinical α-synuclein prion propagation. Moreover, when we inoculated TgM20+/- mice, which express WT human α-synuclein, with E46K PFFs, we observed delayed transmission kinetics with an incomplete attack rate. These findings suggest that the E46K mutation constrains the number of α-synuclein prion conformations that can propagate in TgM47+/- mice, expanding our understanding of the selective pressures that impact α-synuclein prion replication.


Assuntos
Atrofia de Múltiplos Sistemas , Príons , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , Príons/genética , Camundongos Transgênicos , Mutação
2.
Proc Natl Acad Sci U S A ; 111(43): E4568-76, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316790

RESUMO

Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Mutação/genética , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/genética , Superóxido Dismutase/genética , Ácidos/metabolismo , Esclerose Lateral Amiotrófica/genética , Cobre/farmacologia , Cristalografia por Raios X , Ácido Edético/farmacologia , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenótipo , Substâncias Protetoras/farmacologia , Espalhamento a Baixo Ângulo , Soluções , Superóxido Dismutase/química , Superóxido Dismutase-1
3.
Biophys J ; 107(7): 1669-74, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296320

RESUMO

We demonstrate the ability of pulsed dipolar electron spin resonance (ESR) spectroscopy (PDS) to report on the conformation of Cu-Zn superoxide dismutase (SOD1) through the sensitive measurement of dipolar interactions between inherent Cu(2+) ions. Although the extent and the anisotropy of the Cu ESR spectrum provides challenges for PDS, Ku-band (17.3 GHz) double electron-electron resonance and double-quantum coherence variants of PDS coupled with distance reconstruction methods recover Cu-Cu distances in good agreement with crystal structures. Moreover, Cu-PDS measurements expose distinct differences between the conformational properties of wild-type SOD1 and a single-residue variant (I149T) that leads to the disease amyotrophic lateral sclerosis (ALS). The I149T protein displays a broader Cu-Cu distance distribution within the SOD1 dimer compared to wild-type. In a nitroxide (NO)-labeled sample, distance distributions obtained from Cu-Cu, Cu-NO, and NO-NO separations reveal increased structural heterogeneity within the protein and a tendency for mutant dimers to associate. In contrast, perturbations caused by the ALS mutation are completely masked in the crystal structure of I149T. Thus, PDS readily detects alterations in metalloenzyme solution properties not easily deciphered by other methods and in doing so supports the notion that increased range of motion and associations of SOD1 ALS variants contribute to disease progression.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Cristalografia por Raios X , Progressão da Doença , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Superóxido Dismutase/genética
4.
RNA ; 18(4): 807-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345128

RESUMO

Forty-six RNA hairpins containing combinations of 3' or 5' bulge loops and a 3' or 5' fluorescein label were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each hairpin were determined. The bulge loops were of the group I variety, in which the identity of the bulge is known, and the group II variety, in which the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The fluorescein label at either the 3' end or 5' end of the hairpin did not significantly influence the stability of the hairpin. As observed with bulge loops inserted into a duplex motif, the insertion of a bulge loop into the stem of a hairpin loop was destabilizing. The model developed to predict the influence of bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability. Specifically, the influence of the bulge is related to the stability of the hairpin stem distal from the hairpin loop.


Assuntos
Nucleotídeos/química , RNA/química , Termodinâmica
5.
Acta Neuropathol Commun ; 12(1): 94, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867338

RESUMO

Down syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among their complex clinical features, including musculoskeletal, neurological, and cardiovascular disabilities, individuals with DS have an increased risk of developing progressive dementia and early-onset Alzheimer's disease (AD). This dementia is attributed to the increased gene dosage of the amyloid-ß (Aß) precursor protein gene, the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here, we report the characterization of brain samples from four DS cases spanning 36-63 years of age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures revealed paired helical filament (PHF) and straight filament (SF) conformations of tau that were identical to those determined from AD cases. The PHFs and SFs are made of two C-shaped protofilaments, each containing a cross-ß/ß-helix motif. Similar to filaments from AD cases, most filaments from the DS cases adopted the PHF form, while a minority (approximately 20%) formed SFs. Samples from the youngest individual with no documented dementia had sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we used a novel affinity-grid method involving a graphene oxide surface derivatized with anti-tau antibodies. This method improved isolation and revealed that primarily tau PHFs and a minor population of chronic traumatic encephalopathy type II-like filaments were present in this youngest case. These findings expand the similarities between AD and DS to the molecular level, providing insight into their related pathologies and the potential for targeting common tau filament folds by small-molecule therapeutics and diagnostics.


Assuntos
Doença de Alzheimer , Microscopia Crioeletrônica , Síndrome de Down , Proteínas tau , Humanos , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura , Microscopia Crioeletrônica/métodos , Pessoa de Meia-Idade , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Feminino , Adulto , Masculino , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura
6.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617229

RESUMO

Down syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among the complex clinical features including musculoskeletal, neurological and cardiovascular disabilities, individuals with DS have an increased risk of developing progressive dementia and early onset Alzheimer's Disease (AD). This is attributed to the increased gene dosage of amyloid-ß (Aß) precursor protein gene, the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here we report the characterization of brain samples from four DS cases spanning 36 to 63 years of age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures reveal paired helical filament (PHF) and straight filament (SF) conformations of tau that are identical to those determined from AD. The PHFs and SFs are made of two C-shaped protofilaments with a cross-ß/ß-helix motif. Similar to filaments from AD cases, most filaments from the DS cases adopted the PHF form, while a minority (~20%) formed SFs. Samples from the youngest individual with no documented dementia had sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we used a novel affinity-grid method involving a graphene-oxide surface derivatized with anti-tau antibodies. This improved isolation and revealed primarily tau PHFs and a minor population of chronic traumatic encephalopathy type II-like filaments were present in this youngest case. These findings expand the similarities between AD and DS to the molecular level, providing insight into their related pathologies and the potential for targeting common tau filament folds by small-molecule therapeutics and diagnostics.

7.
Methods Mol Biol ; 2561: 293-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399277

RESUMO

Studies show that patients with Alzheimer's disease (AD) have both Aß and tau prions, and thus, AD is a double-prion disease. AD patients with the greatest longevity exhibited low levels of both Aß and tau prions; tau prions were nearly absent in the brains of almost half of the patients who lived beyond 80 years of age. Using cellular bioassays for prions in postmortem samples, we found that both Aß and tau proteins misfold into prions leading to AD, which is either a sporadic or familial dementing disorder. Although AD is transmissible experimentally, there is no evidence that AD is either communicable or contagious. Since the progression of AD correlates poorly with insoluble Aß in the central nervous system (CNS), it was difficult to distinguish between inert amyloids and Aß prions. To measure the progression of AD, we devised rapid bioassays to measure the abundance of isoform-specific Aß prions in the brains of transgenic (Tg) mice and in postmortem human CNS samples from AD victims and people who died of other neurodegenerative diseases (NDs). We found significant correlations between the longevity of individuals with AD, sex, and genetic background, despite the fact that all postmortem brain tissue had essentially the same confirmed neuropathology.Although brains from all AD patients had measurable levels of Aß prions at death, the oldest individuals had lower Aß prion levels than the younger ones. Additionally, the long-lived individuals had low tau prion levels that correlated with the extent of phosphorylated tau (p-tau). Unexpectedly, a longevity-dependent decrease in tau prions was found in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the tau prion levels decreased exponentially with respect to the age at death with a half-time of approximately one decade, and this correlated with the abundance of phosphorylated tau.Even though our findings with tau prions were not unexpected, they were counterintuitive; thus, tau phosphorylation and tau prion activity decreased exponentially with longevity in patients with AD ranging from ages 37 to 99 years. Our findings demonstrated an inverse correlation between longevity in AD patients and the abundance of neurotoxic tau prions. Moreover, our discovery may have profound implications for the selection of phenotypically distinct patient populations and the development of diagnostics and effective therapeutics for AD.


Assuntos
Doença de Alzheimer , Príons , Humanos , Animais , Camundongos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos
8.
Nat Commun ; 14(1): 3048, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236970

RESUMO

Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer's disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-ß amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance. However, mechanisms of small molecule binding to the amyloid core is poorly understood. We used cryo-electron microscopy to determine a 2.7 Å structure of AD patient-derived tau paired-helical filaments bound to the PET ligand GTP-1. The compound is bound stoichiometrically at a single site along an exposed cleft of each protofilament in a stacked arrangement matching the fibril symmetry. Multiscale modeling reveals pi-pi aromatic interactions that pair favorably with the small molecule-protein contacts, supporting high specificity and affinity for the AD tau conformation. This binding mode offers critical insight into designing compounds to target different amyloid folds found across neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Amiloide , Microscopia Crioeletrônica , Ligantes , Proteínas tau/metabolismo
9.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805129

RESUMO

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais , Ligação Proteica , Anticorpos Neutralizantes
10.
bioRxiv ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35982665

RESUMO

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.

11.
Res Sq ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34031651

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

12.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853786

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Assuntos
Domínio Catalítico/fisiologia , Ligação Proteica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Tratamento Farmacológico da COVID-19
13.
bioRxiv ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013269

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

14.
bioRxiv ; 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32817938

RESUMO

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.

15.
bioRxiv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269349

RESUMO

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

16.
Science ; 370(6523): 1473-1479, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33154106

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Testes de Neutralização , Ligação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/química , Glicoproteína da Espícula de Coronavírus/química , Células Vero
17.
Elife ; 72018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29611807

RESUMO

In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Relógios Circadianos , Proteínas de Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , Ativação Transcricional , Animais , Drosophila , Retroalimentação Fisiológica , Regulação da Expressão Gênica
18.
J Phys Chem B ; 122(41): 9443-9451, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30222354

RESUMO

Pulsed dipolar electron spin resonance spectroscopy (PDS) is a powerful tool for measuring distances in solution-state macromolecules. Paramagnetic metal ions, such as Cu2+, are used as spin probes because they can report on metalloprotein features and can be spectroscopically distinguished from traditional nitroxide (NO)-based labels. Here, we demonstrate site-specific incorporation of Cu2+ into non-metalloproteins through the use of a genetically encodable non-natural amino acid, 3-pyrazolyltyrosine (PyTyr). We first incorporate PyTyr in cyan fluorescent protein to measure Cu2+-to-NO distances and examine the effects of solvent conditions on Cu2+ binding and protein aggregation. We then apply the method to characterize the complex formed by the histidine kinase CheA and its target response regulator CheY. The X-ray structure of CheY-PyTyr confirms Cu labeling at PyTyr but also reveals a secondary Cu site. Cu2+-to-NO and Cu2+-to-Cu2+ PDS measurements of CheY-PyTyr with nitroxide-labeled CheA provide new insights into the conformational landscape of the phosphotransfer complex and have implications for kinase regulation.


Assuntos
Cobre/química , Pirazóis/química , Marcadores de Spin , Tirosina/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Histidina Quinase/química , Histidina Quinase/genética , Histidina Quinase/isolamento & purificação , Histidina Quinase/metabolismo , Mesilatos/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/isolamento & purificação , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Domínios Proteicos , Pirazóis/síntese química , Thermotoga maritima/química , Thermotoga maritima/genética , Tirosina/síntese química , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa