Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(43)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830770

RESUMO

Antimicrobial peptides (AMPs) and lipopeptides (LPs) represent very promising molecules to fight resistant bacterial infections due to their broad-spectrum of activity, their first target, i.e. the bacterial membrane, and the rapid bactericidal action. For both types of molecules, the action mechanism starts from the membrane of the pathogen agents, producing a disorganization of their phase structure or the formation of pores of different size altering their permeability. This mechanism of action is based on physical interactions more than on a lock-and-key recognition event and it is difficult for the pathogens to rapidly develop an effective resistance. Very small differences in the sequence of both AMPs and LPs might lead to very different effects on the target membrane. Therefore, a correct understanding of their mechanism of action is required with the aim of developing new synthetic peptides, analogues of the natural ones, with specific and more powerful bactericidal activity. Atomic force microscopy (AFM), with its high resolution and the associated force spectroscopy resource, provides a valuable technique to investigate the reorganization of lipid bilayers exposed to antimicrobial or lipopeptides. Here, we present AFM results obtained by ours and other groups on the action of AMPs and LPs on supported lipid bilayers (SLBs) of different composition. We also consider data obtained by fluorescence microscopy to compare the AFM data with another technique which can be used on different lipid bilayer model systems such as SLBs and giant unilamellar vesicles. The outcomes here presented highlight the powerful of AFM-based techniques in detecting nanoscale peptide-membrane interactions and strengthen their use as an exceptional complementary tool toin vivoinvestigations. Indeed, the combination of these approaches can help decipher the mechanisms of action of different antimicrobials and lipopeptides at both the micro and nanoscale levels, and to design new and more efficient antimicrobial compounds.


Assuntos
Anti-Infecciosos , Bicamadas Lipídicas , Antibacterianos/química , Bicamadas Lipídicas/química , Lipopeptídeos/farmacologia , Lipopolissacarídeos , Microscopia de Força Atômica/métodos
2.
Small ; 17(47): e2104487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34676978

RESUMO

Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of CC bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.


Assuntos
Grafite , Membrana Celular , Fricção , Simulação de Dinâmica Molecular , Silício
3.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557265

RESUMO

Atomic force microscopy is an extremely versatile technique, featuring atomic-scale imaging resolution, and also offering the possibility to probe interaction forces down to few pN. Recently, this technique has been specialized to study the interaction between single living cells, one on the substrate, and a second being adhered on the cantilever. Cell-cell force spectroscopy offers a unique tool to investigate in fine detail intra-cellular interactions, and it holds great promise to elucidate elusive phenomena in physiology and pathology. Here we present a systematic study of the effect of the main measurement parameters on cell-cell curves, showing the importance of controlling the experimental conditions. Moreover, a simple theoretical interpretation is proposed, based on the number of contacts formed between the two interacting cells. The results show that single cell-cell force spectroscopy experiments carry a wealth of information that can be exploited to understand the inner dynamics of the interaction of living cells at the molecular level.


Assuntos
Comunicação Celular , Fenômenos Mecânicos , Microscopia de Força Atômica , Análise Espectral
4.
Sensors (Basel) ; 21(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577322

RESUMO

The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode.

5.
Eur Biophys J ; 49(5): 401-408, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32632743

RESUMO

The lipid bilayer is the basis of the structure and function of the cell membrane. The study of the molecular phenomena that affect biological membranes has a great impact on the understanding of cellular physiology. To understand these phenomena, it has become increasingly necessary to develop simple synthetic models that allow the most basic details of such processes to be reproduced. In this short communication, we took advantage of the properties of two well-established lipid model systems, GUVs and SLBs, with compositions mimicking the cell membrane present in mammals and bacteria, to study the thermotropic phase behavior of lipids as well as the effect of daptomycin, a cyclic lipopeptide used as an antibiotic. The study of mechanical and thermodynamical properties of these model systems could contribute to establish a theoretical framework to develop more efficient strategies for biological control.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Daptomicina/farmacologia , Fenômenos Mecânicos/efeitos dos fármacos , Modelos Moleculares , Lipossomas Unilamelares/química , Fenômenos Biomecânicos/efeitos dos fármacos , Conformação Molecular
6.
Biophys J ; 116(3): 503-517, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665697

RESUMO

Understanding the lateral organization of biological membranes plays a key role on the road to fully appreciate the physiological functions of this fundamental barrier between the inside and outside regions of a cell. Ternary lipid bilayers composed of a high and a low melting temperature lipid and cholesterol represent a model system that mimics some of the important thermodynamical features of much more complex lipid mixtures such as those found in mammal membranes. The phase diagram of these ternary mixtures can be studied exploiting fluorescence microscopy in giant unilamellar vesicles, and it is typically expected to give rise, for specific combinations of composition and temperature, to regions of two-phase coexistence and a region with three-phase coexistence, namely, the liquid-ordered, liquid-disordered, and solid phases. Whereas the observation of two-phase coexistence is routinely possible using fluorescence microscopy, the three-phase region is more elusive to study. In this article, we show that particular lipid mixtures containing diphytanoyl-phosphatidylcholine and cholesterol plus different types of sphingomyelin (SM) are prone to produce bilayer regions with more than two levels of fluorescence intensity. We found that these intensity levels occur at low temperature and are linked to the copresence of long and asymmetric chains in SMs and diphytanoyl-phosphatidylcholine in the lipid mixtures. We discuss the possible interpretations for this observation in terms of bilayer phase organization in the presence of sphingolipids. Additionally, we also show that in some cases, liposomes in the three-phase coexistence state exhibit extreme sensitivity to lateral tension. We hypothesize that the appearance of the different phases is related to the asymmetric structure of SMs and to interdigitation effects.


Assuntos
Esfingomielinas/química , Lipossomas Unilamelares/química , Colesterol/química , Estresse Mecânico , Temperatura
7.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978987

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive malignant tumor of the central nervous system, with poor survival in both treated and untreated patients. Recent studies began to explain the molecular pathway, comprising the dynamic structural and mechanical changes involved in GBM. In this context, some studies showed that the human glioblastoma cells release high levels of glutamate, which regulates the proliferation and survival of neuronal progenitor cells. Considering that cancer cells possess properties in common with neural progenitor cells, it is likely that the functions of glutamate receptors may affect the growth of cancer cells and, therefore, open the road to new and more targeted therapies.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Glioblastoma/patologia , Invasividade Neoplásica/patologia , Receptores de Glutamato/metabolismo , Animais , Fenômenos Biomecânicos , Movimento Celular , Neoplasias do Sistema Nervoso Central/metabolismo , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Canais Iônicos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais
8.
Nanotechnology ; 28(41): 415601, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28762334

RESUMO

The localized formation of gold nanostructures with controlled size and shape on chitosan films doped with gold precursor upon electromagnetic irradiation of various types is demonstrated here. Such controlled formation is achieved by tuning the wavelength, the energy and the interaction time of the radiation with the composite films. In particular, the use of a single UV nanosecond laser pulse results in the formation of gold sub-micron platelets with specific crystal structure, while increasing the number of pulses, further precursor reduction and photofragmentation induce the formation of gold nanoparticles. Using x-ray radiation as an alternative energy source, the reduction of the gold precursor and the subsequent formation of particles follow a different pathway. Specifically, x-ray-induced photo-reduction triggers the selective formation of gold sub-micron platelets with a very well defined {111} crystal phase. In this case, the density of crystal platelets increases by increasing the irradiation time of the films, while no photofragmentation process is observed. The gold structures pre-formed by x-ray radiation can be fragmented by subsequent pulsed UV laser irradiation forming nanoparticles with much narrower size distribution compared to that obtained via exclusive UV irradiation. Thanks to the perfect coupling between the natural polymeric matrix and gold nanostructures, the bionanocomposite systems developed could find various applications in biomaterial science and in biosensors field.


Assuntos
Campos Eletromagnéticos , Ouro/química , Membranas Artificiais , Nanopartículas Metálicas/química
9.
Langmuir ; 32(25): 6319-27, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27268249

RESUMO

The control of neuron-substrate adhesion has been always a challenge for fabricating neuron-based cell chips and in particular for multielectrode array (MEA) devices, which warrants the investigation of the electrophysiological activity of neuronal networks. The recent introduction of high-density chips based on the complementary metal oxide semiconductor (CMOS) technology, integrating thousands of electrodes, improved the possibility to sense large networks and raised the challenge to develop newly adapted functionalization techniques to further increase neuron electrode localization to avoid the positioning of cells out of the recording area. Here, we present a simple and straightforward chemical functionalization method that leads to the precise and exclusive positioning of the neural cell bodies onto modified electrodes and inhibits, at the same time, cellular adhesion in the surrounding insulator areas. Different from other approaches, this technique does not require any adhesion molecule as well as complex patterning technique such as µ-contact printing. The functionalization was first optimized on gold (Au) and silicon nitride (Si3N4)-patterned surfaces. The procedure consisted of the introduction of a passivating layer of hydrophobic silane molecules (propyltriethoxysilane [PTES]) followed by a treatment of the Au surface using 11-amino-1-undecanethiol hydrochloride (AT). On model substrates, well-ordered neural networks and an optimal coupling between a single neuron and single micrometric functionalized Au surface were achieved. In addition, we presented the preliminary results of this functionalization method directly applied on a CMOS-MEA: the electrical spontaneous spiking and bursting activities of the network recorded for up to 4 weeks demonstrate an excellent and stable neural adhesion and functional behavior comparable with what expected using a standard adhesion factor, such as polylysine or laminin, thus demonstrating that this procedure can be considered a good starting point to develop alternatives to the traditional chip coatings to provide selective and specific neuron-substrate adhesion.

10.
J Mol Recognit ; 25(5): 270-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22528188

RESUMO

Single-cell force spectroscopy is an emerging technique in the field of biomedicine because it has proved to be a unique tool to obtain mechanical and functional information on living cells, with force resolution up to single molecular bonds. This technique was applied to the study of the cytoskeleton organisation of neuroblastoma cells, a life-threatening cancer typically developing during childhood, and the results were interpreted on the basis of reference experiments on human embryonic kidney cell line. An intimate connection emerges among cellular state, cytoskeleton organisation and experimental outcome that can be potentially exploited towards a new method for cancer stadiation of neuroblastoma cells.


Assuntos
Membrana Celular/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica , Neuroblastoma/metabolismo , Células Cultivadas , Imunofluorescência , Humanos , Rim/citologia , Rim/ultraestrutura , Microscopia Eletrônica de Varredura , Neuroblastoma/patologia
11.
Membranes (Basel) ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35877876

RESUMO

Functional peptides are now widely used in a myriad of biomedical and clinical contexts, from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying this diverse range of applications are the non-specific interactions that can occur between peptides and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface structural flexibility of the peptides play a crucial role and can be regulated by the presence of specific molecular residues that give rise to precise molecular events. Nevertheless, most of the mechanistic details regulating the encounter between peptides and the membranes of bacterial or animal cells are still poorly understood, thus greatly limiting the biomimetic potential of these therapeutic molecules. In this arena, finely engineered nanomaterials-such as small amphiphilic gold nanoparticles (AuNPs) protected by a mixed thiol monolayer-can provide a powerful tool for mimicking and investigating the physicochemical processes underlying peptide-lipid interactions. Within this perspective, we present here a critical review of membrane effects induced by both amphiphilic AuNPs and well-known amphiphilic peptide families, such as cell-penetrating peptides and antimicrobial peptides. Our discussion is focused particularly on the effects provoked on widely studied model cell membranes, such as supported lipid bilayers and lipid vesicles. Remarkable similarities in the peptide or nanoparticle membrane behavior are critically analyzed. Overall, our work provides an overview of the use of amphiphilic AuNPs as a highly promising tailor-made model to decipher the molecular events behind non-specific peptide-lipid interactions and highlights the main affinities observed both theoretically and experimentally. The knowledge resulting from this biomimetic approach could pave the way for the design of synthetic peptides with tailored functionalities for next-generation biomedical applications, such as highly efficient intracellular delivery systems.

12.
Biology (Basel) ; 11(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053094

RESUMO

Aluminum is the second most widely used metal worldwide. It is present as an additive in cosmetics, pharmaceuticals, food, and food contact materials (FCM). In this study, we confirm the bactericidal effect of a special anodizing method, based on TiO2 nanoparticles (DURALTI®) deposited on aluminum disks with different roughness and subjected to two sanitizing treatments: UV and alcohol 70%. Consequently, we perform a time-course evaluation against both Gram-negative and Gram-positive bacteria to better frame the time required to achieve the best result. Approximately 106 CFU/mL of Escherichia coli ATCC 25922; Salmonella Typhimurium ATCC 1402; Yersinia enterocolitica ATCC 9610; Pseudomonas aeruginosa ATCC 27588; Staphylococcus aureus ATCC 6538; Enterococcus faecalis ATCC 29212; Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888 were inoculated onto each aluminum surface and challenged with UV and alcohol 70% at 0, 15", 30", 1', 5', 15', 30', 1, 2, 4 and 6 h. DURALTI® coating already confirmed its ability to induce a 4-logarithmic decrease (from 106 to 102 CFU/mL) after 6 h. Once each sanitizing treatment was applied, an overall bacterial inhibition occurred in a time ranging from 15'' to 1'. The results are innovative in terms of preventing microbial adhesion and growth in the food industry.

13.
Toxicology ; 466: 153081, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34953976

RESUMO

Inhalation of mineral fibres is associated with the onset of an inflammatory activity in the lungs and the pleura responsible for the development of fatal malignancies. It is known that cell damage is a necessary step for triggering the inflammatory response. However, the mechanisms by which mineral fibres exert cytotoxic activity are not fully understood. In this work, the kinetics of the early cytotoxicity mechanisms of three mineral fibres (i.e., chrysotile, crocidolite and fibrous erionite) classified as carcinogenic by the International Agency for Research on Cancer, was determined for the first time in a comparative manner using time-lapse video microscopy coupled with in vitro assays. All tests were performed using the THP-1 cell line, differentiated into M0 macrophages (M0-THP-1) and exposed for short times (8 h) to 25 µg/mL aliquots of chrysotile, crocidolite and fibrous erionite. The toxic action of fibrous erionite on M0-THP-1 cells is manifested since the early steps (2 h) of the experiment while the cytotoxicity of crocidolite and chrysotile gradually increases during the time span of the experiment. Chrysotile and crocidolite prompt cell death mainly via apoptosis, while erionite exposure is also probably associated to a necrotic-like effect. The potential mechanisms underlying these different toxicity behaviours are discussed in the light of the different morphological, and chemical-physical properties of the three fibres.


Assuntos
Apoptose , Microscopia de Vídeo/métodos , Fibras Minerais/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Imagem com Lapso de Tempo/métodos , Asbesto Crocidolita/toxicidade , Asbestos Serpentinas/toxicidade , Cálcio/metabolismo , Corantes Fluorescentes , Humanos , Sódio/metabolismo , Células THP-1 , Zeolitas/toxicidade
14.
Ann Biomed Eng ; 49(9): 2243-2259, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33728867

RESUMO

Mechanobiology has nowadays acquired the status of a topic of fundamental importance in a degree in Biological Sciences. It is inherently a multidisciplinary topic where biology, physics and engineering competences are required. A course in mechanobiology should include lab experiences where students can appreciate how mechanical stimuli from outside affect living cell behaviour. Here we describe all the steps to build a cell stretcher inside an on-stage cell incubator. This device allows exposing living cells to a periodic mechanical stimulus similar to what happens in physiological conditions such as, for example, in the vascular system or in the lungs. The reaction of the cells to the periodic mechanical stretching represents a prototype of a mechanobiological signal integrated by living cells. We also provide the theoretical and experimental aspects related to the calibration of the stretcher apparatus at a level accessible to researchers not used to dealing with topics like continuum mechanics and analysis of deformations. We tested our device by stretching cells of two different lines, U87-MG and Balb-3T3 cells, and we analysed and discussed the effect of the periodic stimulus on both cell reorientation and migration. We also discuss the basic aspects related to the quantitative analysis of the reorientation process and of cell migration. We think that the device we propose can be easily reproduced at low-cost within a project-oriented course in the fields of biology, biotechnology and medical engineering.


Assuntos
Biofísica/métodos , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Linhagem Celular , Movimento Celular , Humanos , Camundongos , Imagem com Lapso de Tempo
15.
Microorganisms ; 9(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530444

RESUMO

Stainless steel, widely present in the food industry, is frequently exposed to bacterial colonization with possible consequences on consumers' health. 288 stainless steel disks with different roughness (0.25, 0.5 and 1 µm) were challenged with four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive bacteria (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) and underwent three different sanitizing treatments (UVC, alcohol 70% v/v and Gold lotion). Moreover, the same procedure was carried out onto the same surfaces after a nanotechnological surface coating (nanoXHAM® D). A significant bactericidal effect was exerted by all of the sanitizing treatments against all bacterial strains regardless of roughness and surface coating. The nanoXHAM® D coating itself induced an overall bactericidal effect as well as in synergy with all sanitizing treatments regardless of roughness. Stainless steel surface roughness is poorly correlated with bacterial adhesion and only sanitizing treatments can exert significant bactericidal effects. Most of sanitizing treatments are toxic and corrosive causing the onset of crevices that are able to facilitate bacterial nesting and growth. This nanotechnological coating can reduce surface adhesion with consequent reduction of bacterial adhesion, nesting, and growth.

16.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438952

RESUMO

One of the most-used food contact materials is stainless steel (AISI 304L or AISI 316L), owing to its high mechanical strength, cleanability, and corrosion resistance. However, due to the presence of minimal crevices, stainless-steel is subject to microbial contamination with consequent significant reverb on health and industry costs due to the lack of effective reliability of sanitizing agents and procedures. In this study, we evaluated the noncytotoxic effect of an amorphous SiOxCyHz coating deposited on stainless-steel disks and performed a time-course evaluation for four Gram-negative bacteria and four Gram-positive bacteria. A low cytotoxicity of the SiOxCyHz coating was observed; moreover, except for some samples, a five-logarithm decrease was visible after 1 h on coated surfaces without any sanitizing treatment and inoculated with Gram-negative and Gram-positive bacteria. Conversely, a complete bacterial removal was observed after 30 s-1 min application of alcohol and already after 15 s under UVC irradiation against both bacterial groups. Moreover, coating deposition changed the wetting behaviors of treated samples, with contact angles increasing from 90.25° to 113.73°, realizing a transformation from hydrophilicity to hydrophobicity, with tremendous repercussions in various technological applications, including the food industry.

17.
J Phys Chem B ; 124(39): 8562-8571, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886515

RESUMO

Daptomycin (DAP) is a calcium-dependent cyclic lipopeptide with great affinity for negatively charged phospholipids bearing the phosphatidylglycerol (PG) headgroup and has been used since 2003 as a last resort antibiotic in the treatment of severe infections caused by Gram-positive bacteria. The first step of its mechanism of action involves the interaction with the bacterial membrane, which not only represents a physical barrier but also accommodates transmembrane proteins, such as receptors, transporters, and enzymes, whose activity is crucial for the survival of bacteria. This results in a less efficient development of resistance strategies by pathogens compared to common antibiotics that activate or inhibit biochemical pathways connected to specific target proteins. Although already on the market, the molecular mechanism of action of DAP is still a controversial subject of investigation and it is most likely the result of a combination of distinct effects. Understanding how DAP targets the membrane of pathogens could be of great help in finding its analogues that could better avoid the development of resistance. Here, exploiting fluorescence microscopy and atomic force microscopy (AFM), we demonstrated that DAP affects the thermodynamic behavior of lipid mixtures containing PG moieties. Regardless of whether the PG lipids are in the liquid or solid phase, DAP preferably interacts with this headgroup and is able to penetrate more deeply into the lipid bilayer in the regions where this headgroup is present. In particular, considering the results of an AFM/spectroscopy investigation, DAP appears to produce a stiffening effect of the domains where PG lipids are mainly in the fluid phase, whereas it causes fluidification of the domains where PG lipids are in the solid phase.


Assuntos
Daptomicina , Antibacterianos/farmacologia , Daptomicina/farmacologia , Bactérias Gram-Positivas , Bicamadas Lipídicas , Fosfolipídeos
18.
Biology (Basel) ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321703

RESUMO

One of the main concerns of the food industry is microbial adhesion to food contact surfaces and consequent contamination. We evaluated the potential bacteriostatic/bactericidal efficacy of aluminum surfaces with different large-scale roughness (0.25, 0.5 and 1 µm) before and after the surface treatment with a special anodizing based on titanium oxide nanotechnology (DURALTI®) and after 3 different sanitizing treatments, e.g., UV, alcohol and a natural product named Gold lotion. Four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) bacteria were screened. As far as concerns aluminum surfaces without nanotechnology surface treatment, an overall bacteriostatic effect was observed for all strains with respect to the initial inoculum that was 106 CFU/mL. Conversely, an overall bactericidal effect was observed both for Gram-negative and -positive bacteria on DURALTI®-treated aluminum disks, regardless of roughness and sanitizing treatment. These results are innovative in terms of the great potential of the antibacterial activity of nanotechnologically treated food contact surfaces and their combination with some sanitizing agents that might be exploited in the food industry.

19.
Front Cell Dev Biol ; 8: 610570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537303

RESUMO

Human bone marrow-derived mesenchymal stem cells (hBMSCs) and their derivative enhanced green fluorescent protein (eGFP)-hBMSCs were employed to evaluate an innovative hybrid scaffold composed of granular hydroxylapatite and collagen hemostat (Coll/HA). The cellular morphology/cytoskeleton organization and cell viability were investigated by immunohistochemistry (IHC) and AlamarBlue metabolic assay, respectively. The expression of osteopontin and osteocalcin proteins was analyzed by IHC and ELISA, whereas osteogenic genes were investigated by quantitative PCR (Q-PCR). Cell morphology of eGFP-hBMSCs was indistinguishable from that of parental hBMSCs. The cytoskeleton architecture of hBMSCs grown on the scaffold appeared to be well organized, whereas its integrity remained uninfluenced by the scaffold during the time course. Metabolic activity measured in hBMSCs grown on a biomaterial was increased during the experiments, up to day 21 (p < 0.05). The biomaterial induced the matrix mineralization in hBMSCs. The scaffold favored the expression of osteogenic proteins, such as osteocalcin and osteopontin. In hBMSC cultures, the scaffold induced up-regulation in specific genes that are involved in ossification process (BMP2/3, SPP1, SMAD3, and SP7), whereas they showed an up-regulation of MMP9 and MMP10, which play a central role during the skeletal development. hBMSCs were induced to chondrogenic differentiation through up-regulation of COL2A1 gene. Our experiments suggest that the innovative scaffold tested herein provides a good microenvironment for hBMSC adhesion, viability, and osteoinduction. hBMSCs are an excellent in vitro cellular model to assay scaffolds, which can be employed for bone repair and bone tissue engineering.

20.
Nanoscale ; 11(25): 12275-12284, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211302

RESUMO

Understanding the molecular mechanism by which the signal of the presence of an antibiotic is transduced from outside to inside the bacterial cell is of fundamental interest for the ß-lactam antibiotic resistance problem, but remains difficult to accomplish. No approach has ever addressed entire penicillin receptors in a membrane environment. Here we describe a method to investigate the purified Bacillus licheniformis BlaR1 receptor -a membrane-bound penicillin receptor involved in ß-lactam resistance- embedded into a lipid bilayer in absence or presence of penicillin. By selecting a mutated receptor blocked in its signal transduction pathway just after its activation by penicillin, we revealed the very first step of receptor signalling by unfolding the receptor from its C-terminal end by AFM-based single-molecule force spectroscopy. We showed that the presence of the antibiotic entails significant conformational changes within the receptor. Our approach opens an avenue to study signal-transduction pathways mediated by membrane-bound proteins in a membrane environment.


Assuntos
Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Penicilinas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa