Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Blood Cells Mol Dis ; 107: 102856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762921

RESUMO

COVID-19 disease progression can be accompanied by a "cytokine storm" that leads to secondary sequelae such as acute respiratory distress syndrome. Several inflammatory cytokines have been associated with COVID-19 disease progression, but have high daily intra-individual variability. In contrast, we have shown that the inflammatory biomarker γ' fibrinogen (GPF) has a 6-fold lower coefficient of variability compared to other inflammatory markers such as hs-CRP. The aims of the study were to measure GPF in serial blood samples from COVID-19 patients at a tertiary care medical center in order to investigate its association with clinical measures of disease progression. COVID-19 patients were retrospectively enrolled between 3/16/2020 and 8/1/2020. GPF was measured using a commercial ELISA. We found that COVID-19 patients can develop extraordinarily high levels of GPF. Our results showed that ten out of the eighteen patients with COVID-19 had the highest levels of GPF ever recorded. The previous highest GPF level of 80.3 mg/dL was found in a study of 10,601 participants in the ARIC study. GPF levels were significantly associated with the need for ECMO and mortality. These findings have potential implications regarding prophylactic anticoagulation of COVID-19 patients.


Assuntos
Biomarcadores , COVID-19 , Fibrinogênio , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Fibrinogênio/análise , Fibrinogênio/metabolismo , Estudos Retrospectivos , Idoso , Biomarcadores/sangue , Adulto , Progressão da Doença
2.
J Immunol ; 206(11): 2596-2604, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972374

RESUMO

The COVID-19 pandemic is a global health emergency, and the development of a successful vaccine will ultimately be required to prevent the continued spread and seasonal recurrence of this disease within the human population. However, very little is known about either the quality of the adaptive immune response or the viral Ag targets that will be necessary to prevent the spread of the infection. In this study, we generated recombinant Vaccinia virus expressing the full-length spike protein from SARS-CoV-2 (VacV-S) to evaluate the cellular and humoral immune response mounted against this viral Ag in mice. Both CD8+ and CD4+ T cells specific to the SARS-CoV-2 spike protein underwent robust expansion, contraction, and persisted for at least 40 d following a single immunization with VacV-S. Vaccination also caused the rapid emergence of spike-specific IgG-neutralizing Abs. Interestingly, both the cellular and humoral immune responses strongly targeted the S1 domain of spike following VacV-S immunization. Notably, immunization with VacV-expressing spike conjugated to the MHC class II invariant chain, a strategy previously reported by us and others to enhance the immunogenicity of antigenic peptides, did not promote stronger spike-specific T cell or Ab responses in vivo. Overall, these findings demonstrate that an immunization approach using VacV or attenuated versions of VacV expressing the native, full-length SARS-CoV-2 spike protein could be used for further vaccine development to prevent the spread of COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vaccinia virus , Animais , Linhagem Celular , Imunização , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia
3.
J Infect Dis ; 225(6): 947-956, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865053

RESUMO

The unprecedented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has called for substantial investigations into the capacity of the human immune system to protect against reinfection and keep pace with the evolution of SARS-CoV-2. We evaluated the magnitude and durability of the SARS-CoV-2-specific antibody responses against parental WA-1 SARS-CoV-2 receptor-binding domain (RBD) and a representative variant of concern (VoC) RBD using antibodies from 2 antibody compartments: long-lived plasma cell-derived plasma antibodies and antibodies encoded by SARS-CoV-2-specific memory B cells (MBCs). Thirty-five participants naturally infected with SARS-CoV-2 were evaluated; although only 25 of 35 participants had VoC RBD-reactive plasma antibodies, 34 of 35 (97%) participants had VoC RBD-reactive MBC-derived antibodies. Our finding that 97% of previously infected individuals have MBCs specific for variant RBDs provides reason for optimism regarding the capacity of vaccination, prior infection, and/or both, to elicit immunity with the capacity to limit disease severity and transmission of VoCs as they arise and circulate.


Assuntos
COVID-19 , Células B de Memória , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Humanos , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus
4.
Immunology ; 164(2): 386-397, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056709

RESUMO

There is growing interest in understanding antibody (Ab) function beyond neutralization. The non-structural protein 1 (NS1) of Zika virus (ZIKV) is an attractive candidate for an effective vaccine as Abs against NS1, unlike the envelope or premembrane, do not carry the risk of mediating antibody-dependent enhancement. Our aim was to evaluate whether ZIKV NS1 Abs elicited following natural infection in humans can mediate antibody-dependent cellular cytotoxicity (ADCC). We evaluated the isotype specificity of ZIKV-specific Abs in immune sera and supernatants from stimulated immune PBMC and found that Abs against ZIKV NS1 and virus-like particles were predominantly of the IgG1 isotype. Using a recently developed FluoroSpot assay, we found robust frequencies of NS1-specific Ab-secreting cells in PBMC of individuals who were naturally infected with ZIKV. We developed assays to measure both natural killer cell activation by flow cytometry and target cell lysis of ZIKV NS1-expressing cells using an image cytometry assay in the presence of ZIKV NS1 Abs. Our data indicate efficient opsonization of ZIKV NS1-expressing CEM-NKR cell lines using ZIKV-immune but not ZIKV-naïve sera, a prerequisite of ADCC. Furthermore, sera from immune donors were able to induce both NK cell degranulation and lysis of ZIKV NS1 CEM-NKR cells in vitro. Our data suggest that ADCC is a possible mechanism for ZIKV NS1 Abs to eliminate virally infected target cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Células Cultivadas , Reações Cruzadas/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Vacinas Virais/imunologia , Infecção por Zika virus/virologia
5.
Indoor Air ; 31(6): 1826-1832, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34189769

RESUMO

Evidence continues to grow supporting the aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the potential role of heating, ventilation, and air conditioning (HVAC) systems in airborne viral transmission, this study sought to determine the viral presence, if any, on air handling units in a healthcare setting where coronavirus disease 2019 (COVID-19) patients were being treated. The presence of SARS-CoV-2 RNA was detected in approximately 25% of samples taken from ten different locations in multiple air handlers. While samples were not evaluated for viral infectivity, the presence of viral RNA in air handlers raises the possibility that viral particles can enter and travel within the air handling system of a hospital, from room return air through high-efficiency MERV-15 filters and into supply air ducts. Although no known transmission events were determined to be associated with these specimens, the findings suggest the potential for HVAC systems to facilitate transfer of virions to locations remote from areas where infected persons reside. These results are important within and outside of healthcare settings and may present necessary guidance for building operators of facilities that are not equipped with high-efficiency filtration. Furthermore, the identification of SARS-CoV-2 in HVAC components indicates the potential utility as an indoor environmental surveillance location.


Assuntos
Ar Condicionado , Poluição do Ar em Ambientes Fechados , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Microbiologia do Ar , COVID-19 , Atenção à Saúde , Calefação , Hospitais , Humanos , Ventilação
6.
Proc Natl Acad Sci U S A ; 115(45): 11513-11518, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341219

RESUMO

RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.


Assuntos
Capsídeo/ultraestrutura , Vírus da Dengue/ultraestrutura , Genoma Viral , RNA Viral/ultraestrutura , Pareamento de Bases , Capsídeo/química , Capsídeo/metabolismo , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Aptidão Genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/metabolismo , Sorogrupo , Montagem de Vírus/genética
7.
J Infect Dis ; 221(12): 2018-2025, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545367

RESUMO

BACKGROUND: The once-in-a-lifetime recommendation for vaccination against yellow fever virus (YFV) has been controversial, leading to increased scrutiny of the durability of immunity after 17D vaccination. METHODS: This is a cross-sectional analysis of 17D vaccinees living in nonendemic Portland, Oregon. Neutralization assays were used to determine YFV immunity. The relationships between 17D immunity and vaccination history, demographics, and travel were evaluated using nominal logistic regression. RESULTS: Seventy-one of 92 (77.2%) subjects were YFV seropositive (90 percent plaque reduction neutralization test ≥1:10) at all timepoints, and 24 of 38 (63.8%) were YFV seropositive at ≥10 years after single-dose vaccination. No relationship was found between YFV immunity and time in endemic countries, other flavivirus immunity, or demographics. Subjects were most likely to become seronegative between 3 and 12 years postvaccination (logistic regression, odds ratio [OR] = 1.75; 95% confidence interval [CI], 1.12-2.73). A comparison of our results and 4 previous studies of YFV nonendemic vaccinees found that overall, 79% (95% CI, 70%-86%) of vaccinees are likely to be seropositive ≥10 years postvaccination. CONCLUSIONS: These results suggest that 1 in 5 17D vaccinees will lack neutralizing antibodies at ~10 years postvaccination, and a booster vaccination should be considered for nonendemic vaccinees before travel to regions where there is a high risk of YFV transmission.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Imunogenicidade da Vacina , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Estudos Transversais , Feminino , Humanos , Imunização Secundária , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Oregon , Fatores de Tempo , Doença Relacionada a Viagens , Febre Amarela/imunologia , Febre Amarela/transmissão , Febre Amarela/virologia , Vacina contra Febre Amarela/administração & dosagem , Vírus da Febre Amarela/imunologia , Adulto Jovem
9.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278237

RESUMO

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Assuntos
Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hibridização In Situ , Macaca mulatta , Masculino , Testes de Neutralização , Reação em Cadeia da Polimerase , Viremia/virologia , Zika virus
10.
J Virol ; 90(10): 5090-5097, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962223

RESUMO

UNLABELLED: The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. IMPORTANCE: Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus have been incompletely described. Here we map a region on dengue virus serotype 3 recognized by the human neutralizing antibody 5J7 and then test the functional significance of this region by transplanting it into a serotype 1 virus. Our studies demonstrate a region on dengue virus necessary for 5J7 binding and neutralization. Our work also demonstrates the technical feasibility of engineering dengue viruses to display targets of protective antibodies. This technology can be used to develop new dengue vaccines and diagnostic assays.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Reações Cruzadas , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Engenharia Genética , Humanos , Camundongos , Testes de Neutralização , Sorogrupo
11.
Proc Natl Acad Sci U S A ; 111(5): 1939-44, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24385585

RESUMO

The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Imunidade/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Células HEK293 , Humanos , Células K562 , Macaca mulatta/imunologia , Macaca mulatta/virologia , Dados de Sequência Molecular , Testes de Neutralização , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Sorotipagem , Especificidade da Espécie , Relação Estrutura-Atividade , Fatores de Tempo , Proteínas do Envelope Viral/metabolismo , Viremia/imunologia
14.
Proc Natl Acad Sci U S A ; 109(19): 7439-44, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22499787

RESUMO

Dengue is a mosquito-borne flavivirus that is spreading at an unprecedented rate and has developed into a major health and economic burden in over 50 countries. Even though infected individuals develop potent and long-lasting serotype-specific neutralizing antibodies (Abs), the epitopes engaged by human neutralizing Abs have not been identified. Here, we demonstrate that the dengue virus (DENV)-specific serum Ab response in humans consists of a large fraction of cross-reactive, poorly neutralizing Abs and a small fraction of serotype-specific, potently inhibitory Abs. Although many mouse-generated, strongly neutralizing monoclonal antibodies (mAbs) recognize epitopes that are present on recombinant DENV envelope (E) proteins, unexpectedly, the majority of neutralizing Abs in human immune sera bound to intact virions but not to the ectodomain of purified soluble E proteins. These conclusions with polyclonal Abs were confirmed with newly generated human mAbs derived from DENV-immune individuals. Two of three strongly neutralizing human mAbs bound to E protein epitopes that were preserved on the virion but not on recombinant E (rE) protein. We propose that humans produce Abs that neutralize DENV infection by binding a complex, quaternary structure epitope that is expressed only when E proteins are assembled on a virus particle. Mapping studies indicate that this epitope has a footprint that spans adjacent E protein dimers and includes residues at the hinge between domains I and II of E protein. These results have significant implications for the DENV Ab and vaccine field.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Epitopos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos/imunologia , Chlorocebus aethiops , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Humanos , Soros Imunes/imunologia , Macaca mulatta , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Ligação Proteica/imunologia , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia
15.
J Clin Invest ; 134(6)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227381

RESUMO

BACKGROUNDVaccination is typically administered without regard to site of prior vaccination, but this factor may substantially affect downstream immune responses.METHODSWe assessed serological responses to initial COVID-19 vaccination in baseline seronegative adults who received second-dose boosters in the ipsilateral or contralateral arm relative to initial vaccination. We measured serum SARS-CoV-2 spike-specific Ig, receptor-binding domain-specific (RBD-specific) IgG, SARS-CoV-2 nucleocapsid-specific IgG, and neutralizing antibody titers against SARS-CoV-2.D614G (early strain) and SARS-CoV-2.B.1.1.529 (Omicron) at approximately 0.6, 8, and 14 months after boosting.RESULTSIn 947 individuals, contralateral boosting was associated with higher spike-specific serum Ig, and this effect increased over time, from a 1.1-fold to a 1.4-fold increase by 14 months (P < 0.001). A similar pattern was seen for RBD-specific IgG. Among 54 pairs matched for age, sex, and relevant time intervals, arm groups had similar antibody levels at study visit 2 (W2), but contralateral boosting resulted in significantly higher binding and neutralizing antibody titers at W3 and W4, with progressive increase over time, ranging from 1.3-fold (total Ig, P = 0.007) to 4.0-fold (pseudovirus neutralization to B.1.1.529, P < 0.001).CONCLUSIONSIn previously unexposed adults receiving an initial vaccine series with the BNT162b2 mRNA COVID-19 vaccine, contralateral boosting substantially increases antibody magnitude and breadth at times beyond 3 weeks after vaccination. This effect should be considered during arm selection in the context of multidose vaccine regimens.FUNDINGM.J. Murdock Charitable Trust, OHSU Foundation, NIH.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19 , Adulto , Humanos , Vacina BNT162 , Vacinação , Anticorpos Antivirais , Imunoglobulina G , RNA Mensageiro , Anticorpos Neutralizantes
16.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172101

RESUMO

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Assuntos
Líquidos Corporais , COVID-19 , Feminino , Humanos , SARS-CoV-2 , COVID-19/complicações , Linfócitos B , Progressão da Doença , Fenótipo
17.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701200

RESUMO

As the COVID-19 pandemic continues, long-term immunity against SARS-CoV-2 will be important globally. Official weekly cases have not dropped below 2 million since September of 2020, and continued emergence of novel variants has created a moving target for our immune systems and public health alike. The temporal aspects of COVID-19 immunity, particularly from repeated vaccination and infection, are less well understood than short-term vaccine efficacy. In this study, we explored the effect of combined vaccination and infection, also known as hybrid immunity, and the timing thereof on the quality and quantity of antibodies elicited in a cohort of 96 health care workers. We found robust neutralizing antibody responses among those with hybrid immunity; these hybrid immune responses neutralized all variants, including BA.2. Neutralizing titers were significantly improved for those with longer vaccine-infection intervals of up to 400 days compared with those with shorter intervals. These results indicate that anti-SARS-CoV-2 antibody responses undergo continual maturation following primary exposure by either vaccination or infection for at least 400 days after last antigen exposure. We show that neutralizing antibody responses improved upon secondary boosting, with greater potency seen after extended intervals. Our findings may also extend to booster vaccine doses, a critical consideration in future vaccine campaign strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Pandemias , Vacinação , Anticorpos Neutralizantes , Imunidade Adaptativa
18.
medRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36656773

RESUMO

As the COVID-19 pandemic continues, long-term immunity against SARS-CoV-2 will be globally important. Official weekly cases have not dropped below 2 million since September of 2020, and continued emergence of novel variants have created a moving target for our immune systems and public health alike. The temporal aspects of COVID-19 immunity, particularly from repeated vaccination and infection, are less well understood than short-term vaccine efficacy. In this study, we explore the impact of combined vaccination and infection, also known as hybrid immunity, and the timing thereof on the quality and quantity of antibodies produced by a cohort of 96 health care workers. We find robust neutralizing antibody responses among those with hybrid immunity against all variants, including Omicron BA.2, and we further found significantly improved neutralizing titers with longer vaccine-infection intervals up to 400 days. These results indicate that anti-SARS-CoV-2 antibody responses undergo continual maturation following primary exposure by either vaccination or infection for at least 400 days after last antigen exposure. We show that neutralizing antibody responses improved upon secondary boosting with greater impact seen after extended intervals. Our findings may also extend to booster vaccine doses, a critical consideration in future vaccine campaign strategies.

19.
PLoS Negl Trop Dis ; 17(3): e0011154, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913428

RESUMO

Infections with Chikungunya virus, a mosquito-borne alphavirus, cause an acute febrile syndrome often followed by chronic arthritis that persists for months to years post-infection. Neutralizing antibodies are the primary immune correlate of protection elicited by infection, and the major goal of vaccinations in development. Using convalescent blood samples collected from both endemic and non-endemic human subjects at multiple timepoints following suspected or confirmed chikungunya infection, we identified antibodies with broad neutralizing properties against other alphaviruses within the Semliki Forest complex. Cross-neutralization generally did not extend to the Venezuelan Equine Encephalitis virus (VEEV) complex, although some subjects had low levels of VEEV-neutralizing antibodies. This suggests that broadly neutralizing antibodies elicited following natural infection are largely complex restricted. In addition to serology, we also performed memory B-cell analysis, finding chikungunya-specific memory B-cells in all subjects in this study as remotely as 24 years post-infection. We functionally assessed the ability of memory B-cell derived antibodies to bind to chikungunya virus, and related Mayaro virus, as well as the highly conserved B domain of the E2 glycoprotein thought to contribute to cross-reactivity between related Old-World alphaviruses. To specifically assess the role of the E2 B domain in cross-neutralization, we depleted Mayaro and Chikungunya virus E2 B domain specific antibodies from convalescent sera, finding E2B depletion significantly decreases Mayaro virus specific cross-neutralizing antibody titers with no significant effect on chikungunya virus neutralization, indicating that the E2 B domain is a key target of cross-neutralizing and potentially cross-protective neutralizing antibodies.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteínas
20.
Sci Rep ; 12(1): 7043, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487969

RESUMO

Access to fast and reliable nucleic acid testing continues to play a key role in controlling the COVID-19 pandemic, especially in the context of increased vaccine break-through risks due to new variants. We report a rapid, low-cost (~ 2 USD), simple-to-use nucleic acid test kit for self-administered at-home testing without lab instrumentation. The entire sample-to-answer workflow takes < 60 min, including noninvasive sample collection, one-step RNA preparation, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) in a thermos, and direct visual inspection of a colorimetric test result. To facilitate long-term storage without cold-chain, a fast one-pot lyophilization protocol was developed to preserve all required biochemical reagents of the colorimetric RT-LAMP test in a single microtube. Notably, the lyophilized RT-LAMP assay demonstrated reduced false positives as well as enhanced tolerance to a wider range of incubation temperatures compared to solution-based RT-LAMP reactions. We validated our RT-LAMP assay using simulated infected samples, and detected a panel of SARS-CoV-2 variants with successful detection of all variants that were available to us at the time. With a simple change of the primer set, our lyophilized RT-LAMP home test can be easily adapted as a low-cost surveillance platform for other pathogens and infectious diseases of global public health importance.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Colorimetria/métodos , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Pandemias , SARS-CoV-2/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa