RESUMO
Despite recent advances in targeted therapies, the molecular mechanisms driving breast cancer initiation, progression, and metastasis are minimally understood. Growing evidence indicate that transfer RNA (tRNA)-derived small RNAs (tsRNA) contribute to biological control and aberrations associated with cancer development and progression. The runt-related transcription factor 1 (RUNX1) transcription factor is a tumor suppressor in the mammary epithelium whereas RUNX1 downregulation is functionally associated with breast cancer initiation and progression. We identified four tsRNA (ts-19, ts-29, ts-46, and ts-112) that are selectively responsive to expression of the RUNX1 tumor suppressor. Our finding that ts-112 and RUNX1 anticorrelate in normal-like mammary epithelial and breast cancer lines is consistent with tumor-related activity of ts-112 and tumor suppressor activity of RUNX1. Inhibition of ts-112 in MCF10CA1a aggressive breast cancer cells significantly reduced proliferation. Ectopic expression of a ts-112 mimic in normal-like mammary epithelial MCF10A cells significantly increased proliferation. These findings support an oncogenic potential for ts-112. Moreover, RUNX1 may repress ts-112 to prevent overactive proliferation in breast epithelial cells to augment its established roles in maintaining the mammary epithelium.
Assuntos
Neoplasias da Mama/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , RNA de Transferência/genética , RNA/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Supressoras de Tumor/genéticaRESUMO
Small, noncoding RNAs are short untranslated RNA molecules, some of which have been associated with cancer development. Recently we showed that a class of small RNAs generated during the maturation process of tRNAs (tRNA-derived small RNAs, hereafter "tsRNAs") is dysregulated in cancer. Specifically, we uncovered tsRNA signatures in chronic lymphocytic leukemia and lung cancer and demonstrated that the ts-4521/3676 cluster (now called "ts-101" and "ts-53," respectively), ts-46, and ts-47 are down-regulated in these malignancies. Furthermore, we showed that tsRNAs are similar to Piwi-interacting RNAs (piRNAs) and demonstrated that ts-101 and ts-53 can associate with PiwiL2, a protein involved in the silencing of transposons. In this study, we extended our investigation on tsRNA signatures to samples collected from patients with colon, breast, or ovarian cancer and cell lines harboring specific oncogenic mutations and representing different stages of cancer progression. We detected tsRNA signatures in all patient samples and determined that tsRNA expression is altered upon oncogene activation and during cancer staging. In addition, we generated a knocked-out cell model for ts-101 and ts-46 in HEK-293 cells and found significant differences in gene-expression patterns, with activation of genes involved in cell survival and down-regulation of genes involved in apoptosis and chromatin structure. Finally, we overexpressed ts-46 and ts-47 in two lung cancer cell lines and performed a clonogenic assay to examine their role in cell proliferation. We observed a strong inhibition of colony formation in cells overexpressing these tsRNAs compared with untreated cells, confirming that tsRNAs affect cell growth and survival.
Assuntos
Neoplasias/metabolismo , Pequeno RNA não Traduzido/metabolismo , Células A549 , Estudos de Casos e Controles , Células HEK293 , Humanos , OncogenesRESUMO
Alterations in the epigenetic landscape are fundamental drivers of aberrant gene expression that contribute to cancer progression and pathology. Understanding specific modes of epigenetic regulation can be used to identify novel biomarkers or targets for therapeutic intervention to clinically treat solid tumors and leukemias. The bivalent marking of gene promoters by H3K4me3 and H3K27me3 is a primary mechanism to poise genes for expression in pluripotent embryonic stem cells (ESC). In this study we interrogated three well-established mammary cell lines to model epigenetic programming observed among breast cancer subtypes. Evidence is provided for a distinct bivalent signature, activating and repressive histone marks co-residing at the same gene promoter, in the MCF7 (ESR/PGR+) luminal breast cancer cell line. We identified a subset of genes, enriched for developmental pathways that regulate cellular phenotype and signaling, and partially recapitulate the bivalent character observed in ESC. We validated the biological relevance of this "oncofetal epigenetic" signature using data from ESR/PGR+ tumor samples from breast cancer patients. This signature of oncofetal epigenetic control is an informative biomarker and may provide novel therapeutic targets, selective for both recurring and treatment-resistant cancers. J. Cell. Physiol. 231: 2474-2481, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Genes Neoplásicos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-TraducionalRESUMO
The Runx1 transcription factor, known for its essential role in normal hematopoiesis, was reported in limited studies to be mutated or associated with human breast tumor tissues. Runx1 increases concomitantly with disease progression in the MMTV-PyMT transgenic mouse model of breast cancer. Compelling questions relate to mechanisms that regulate Runx1 expression in breast cancer. Here, we tested the hypothesis that dysregulation of Runx1-targeting microRNAs (miRNAs) allows for pathologic increase of Runx1 during breast cancer progression. Microarray profiling of the MMTV-PyMT model revealed significant downregulation of numerous miRNAs predicted to target Runx1. One of these, miR-378, was inversely correlated with Runx1 expression during breast cancer progression in mice and in human breast cancer cell lines MCF7 and triple-negative MDA-MB-231 that represent early- and late-stage diseases, respectively. MiR-378 is nearly absent in MDA-MB-231 cells. Luciferase reporter assays revealed that miR-378 binds the Runx1 3' untranslated region (3'UTR) and inhibits Runx1 expression. Functionally, we demonstrated that ectopic expression of miR-378 in MDA-MB-231 cells inhibited Runx1 and suppressed migration and invasion, while inhibition of miR-378 in MCF7 cells increased Runx1 levels and cell migration. Depletion of Runx1 in late-stage breast cancer cells resulted in increased expression of both the miR-378 host gene PPARGC1B and pre-miR-378, suggesting a feedback loop. Taken together, our study identifies a novel and clinically relevant mechanism for regulation of Runx1 in breast cancer that is mediated by a PPARGC1B-miR-378-Runx1 regulatory pathway. Our results highlight the translational potential of miRNA replacement therapy for inhibiting Runx1 in breast cancer.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Camundongos , Fenótipo , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Selective estrogen receptor modulators (SERMs), including the SERM/SERD bazedoxifene (BZA), are used to treat postmenopausal osteoporosis and may reduce breast cancer (BCa) risk. One of the most persistent unresolved questions regarding menopausal hormone therapy is compromised control of proliferation and phenotype because of short- or long-term administration of mixed-function estrogen receptor (ER) ligands. To gain insight into epigenetic effectors of the transcriptomes of hormone and BZA-treated BCa cells, we evaluated a panel of histone modifications. The impact of short-term hormone treatment and BZA on gene expression and genome-wide epigenetic profiles was examined in ERαneg mammary epithelial cells (MCF10A) and ERα+ luminal breast cancer cells (MCF7). We tested individual components and combinations of 17ß-estradiol (E2), estrogen compounds (EC10) and BZA. RNA-seq for gene expression and ChIP-seq for active (H3K4me3, H3K4ac, H3K27ac) and repressive (H3K27me3) histone modifications were performed. Our results show that the combination of BZA with E2 or EC10 reduces estrogen-mediated patterns of histone modifications and gene expression in MCF-7ERα+ cells. In contrast, BZA has minimal effects on these parameters in MCF10A mammary epithelial cells. BZA-induced changes in histone modifications in MCF7 cells are characterized by altered H3K4ac patterns, with changes at distal enhancers of ERα-target genes and at promoters of non-ERα bound proliferation-related genes. Notably, the ERα target gene GREB1 is the most sensitive to BZA treatment. Our findings provide direct mechanistic-based evidence that BZA induces epigenetic changes in E2 and EC10 mediated control of ERα regulatory programs to target distinctive proliferation gene pathways that restrain the potential for breast cancer development.
Assuntos
Neoplasias da Mama , Estrogênios Conjugados (USP) , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Estrogênios Conjugados (USP)/farmacologia , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , TranscriptomaRESUMO
Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFß signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFß and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.
Assuntos
Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Células Epiteliais/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Análise Serial de Tecidos , TranscriptomaRESUMO
The V(D)J recombinase enzyme complex is responsible for the development of a diverse immune system by catalyzing intra-molecular rearrangements of immunoglobulin (Ig) and T cell receptor (TCR) genes at specific recombination signal sequences (RSSs). This enzyme complex has also been implicated in mediating pathologic and non-pathologic intra- and inter-molecular genomic rearrangements at cryptic (Psi) RSSs outside the immune system loci in lymphoid cells. We describe here two V(D)J recombinase mediated genomic rearrangements resulting in alterations at the HPRT locus in human T-cells. These are inter-chromosomal insertions in which DNA fragments are inserted at breakpoints generated by V(D)J recombinase cleavage at Psi RSS sites in the HPRT locus at Xq26. In the first, a TCR signal ended segment from chromosome 14q11 is inserted at a Psi RSS in intron 1 of the HPRT locus. In the second, a DNA fragment from 9q22 is integrated between the coding ends generated by a V(D)J recombinase mediated HPRT deletion. Identification of these in vivo V(D)J mediated inter-chromosomal insertions at Psi RSSs in the HPRT gene supports the accumulating evidence that V(D)J recombinase can mediate mutagenic rearrangements in humans with potential pathologic consequences.
Assuntos
Cromossomos Humanos X , Rearranjo Gênico do Linfócito T , Hipoxantina Fosforribosiltransferase/genética , Aberrações dos Cromossomos Sexuais , VDJ Recombinases/metabolismo , Sequência de Bases , Feminino , Deleção de Genes , Genoma Humano , Humanos , Lactente , Recém-Nascido , Íntrons , Masculino , Dados de Sequência Molecular , Mutagênese Insercional , Recombinação GenéticaRESUMO
The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that result in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was over-represented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways.
Assuntos
Neoplasias da Mama/genética , Metilação de DNA/genética , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Neoplasias da Mama/metabolismo , Epigênese Genética , Feminino , HumanosRESUMO
BACKGROUND: Higher-order chromatin structure is often perturbed in cancer and other pathological states. Although several genetic and epigenetic differences have been charted between normal and breast cancer tissues, changes in higher-order chromatin organization during tumorigenesis have not been fully explored. To probe the differences in higher-order chromatin structure between mammary epithelial and breast cancer cells, we performed Hi-C analysis on MCF-10A mammary epithelial and MCF-7 breast cancer cell lines. RESULTS: Our studies reveal that the small, gene-rich chromosomes chr16 through chr22 in the MCF-7 breast cancer genome display decreased interaction frequency with each other compared to the inter-chromosomal interaction frequency in the MCF-10A epithelial cells. Interestingly, this finding is associated with a higher occurrence of open compartments on chr16-22 in MCF-7 cells. Pathway analysis of the MCF-7 up-regulated genes located in altered compartment regions on chr16-22 reveals pathways related to repression of WNT signaling. There are also differences in intra-chromosomal interactions between the cell lines; telomeric and sub-telomeric regions in the MCF-10A cells display more frequent interactions than are observed in the MCF-7 cells. CONCLUSIONS: We show evidence of an intricate relationship between chromosomal organization and gene expression between epithelial and breast cancer cells. Importantly, this work provides a genome-wide view of higher-order chromatin dynamics and a resource for studying higher-order chromatin interactions in two cell lines commonly used to study the progression of breast cancer.
Assuntos
Neoplasias da Mama/genética , Carcinogênese , Cromatina/genética , Células Epiteliais/metabolismo , Telômero/genética , Neoplasias da Mama/patologia , Epigênese Genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologiaRESUMO
The development of risk-directed treatment protocols over the last 25 years has resulted in an increase in the survival rates of children treated for cancer. As a consequence, there is a growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapy is unknown. We previously reported that children treated for acute lymphocytic leukemia have significantly elevated somatic mutant frequencies at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in their peripheral T cells. To understand the molecular etiology of the increase in mutant frequencies following chemotherapy, we investigated the HPRT mutation spectra and the extent of clonal proliferation in 562 HPRT T cell mutant isolates of 87 blood samples from 47 subjects at diagnosis, during chemotherapy, and postchemotherapy. We observed a significant increase in the proportion of CpG transitions following treatment (13.6-23.3%) compared with healthy controls (4.0%) and a significant decrease in V(D)J-mediated deletions following treatment (0-6.8%) compared with healthy controls (17.0%). There was also a significant change in the class type percentage of V(D)J-mediated HPRT deletions following treatment. In addition, there was a >5-fold increase in T cell receptor gene usage-defined mean clonal proliferation from diagnosis compared with the completion of chemotherapeutic intervention. These data indicate that unique genetic alterations and extensive clonal proliferation are occurring in children following treatment for acute lymphocytic leukemia that may influence long-term risks for multifactorial diseases, including secondary cancers.
Assuntos
Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Hipoxantina Fosforribosiltransferase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Linfoma de Burkitt/sangue , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/enzimologia , Criança , Pré-Escolar , Clonagem Molecular , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/sangue , Masculino , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
The rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes in lymphocytes by V(D)J recombinase is essential for immunological diversity in humans. These DNA rearrangements involve cleavage by the RAG1 and RAG2 (RAG1/2) recombinase enzymes at recombination signal sequences (RSS). This reaction generates two products, cleaved signal ends and coding ends. Coding ends are ligated by non-homologous end-joining proteins to form a functional Ig or TCR gene product, while the signal ends form a signal joint. In vitro studies have demonstrated that RAG1/2 are capable of mediating the transposition of cleaved signal ends into non-specific sites of a target DNA molecule. However, to date, in vivo transposition of signal ends has not been demonstrated. We present evidence of in vivo inter-chromosomal transposition in humans mediated by V(D)J recombinase. T-cell isolates were shown to contain TCRalpha signal ends from chromosome 14 inserted into the X-linked hypo xanthine-guanine phosphoribosyl transferase locus, resulting in gene inactivation. These findings implicate V(D)J recombinase-mediated transposition as a mutagenic mechanism capable of deleterious genetic rearrangements in humans.
Assuntos
DNA Nucleotidiltransferases/metabolismo , Rearranjo Gênico do Linfócito T , Recombinação Genética , Linfócitos T/enzimologia , Sequência de Bases , Sítios de Ligação , Cromossomos Humanos Par 14 , Cromossomos Humanos X , Células Clonais , Inativação Gênica , Genes de Imunoglobulinas , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Região de Junção de Imunoglobulinas/genética , Região de Junção de Imunoglobulinas/imunologia , Modelos Genéticos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , VDJ RecombinasesRESUMO
Receptors have well-conserved regions that are recognized and activated by hormones and neurotransmitters. Most drugs bind to these sites and mimic or block the action of the native ligands. Using a high-throughput functional screen, we identified a potent and selective M(1) muscarinic receptor agonist from a novel structural class. Using a series of chimeric receptors, we demonstrated that this ligand activates the receptor through a region that is not conserved among receptor subtypes, explaining its unprecedented selectivity. This region of the receptor is distinct from the conserved region that is recognized by traditional ligands. The finding that receptors for small-molecule transmitters can have multiple, structurally distinct activation sites has broad implications for the study of receptor structure/function and the potential for the discovery of novel ligands with high selectivity.