Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 120(8): 1305-1317, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28289018

RESUMO

RATIONALE: The sympathetic nervous system is a major mediator of heart function. Intercalated discs composed of desmosomes, adherens junctions, and gap junctions provide the structural backbone for coordinated contraction of cardiac myocytes. OBJECTIVE: Gap junctions dynamically remodel to adapt to sympathetic signaling. However, it is unknown whether such rapid adaption also occurs for the adhesive function provided by desmosomes and adherens junctions. METHODS AND RESULTS: Atomic force microscopy revealed that ß-adrenergic signaling enhances both the number of desmoglein 2-specific interactions along cell junctions and the mean desmoglein 2-mediated binding forces, whereas N-cadherin-mediated interactions were not affected. This was accompanied by increased cell cohesion in cardiac myocyte cultures and murine heart slices. Enhanced desmoglein 2-positive contacts and increased junction length as revealed by immunofluorescence and electron microscopy reflected cAMP-induced reorganization of intercellular contacts. The mechanism underlying cAMP-mediated strengthening of desmoglein 2 binding was dependent on expression of the intercalated disc plaque protein plakoglobin (Pg) and direct phosphorylation at S665 by protein kinase A: Pg deficiency as well as overexpression of the phospho-deficient Pg-mutant S665A abrogated both cAMP-mediated junctional remodeling and increase of cohesion. Moreover, Pg knockout hearts failed to functionally adapt to adrenergic stimulation. CONCLUSIONS: Taken together, we provide first evidence for positive adhesiotropy as a new cardiac function of sympathetic signaling. Positive adhesiotropy is dependent on Pg phosphorylation at S665 by protein kinase A. This mechanism may be of high medical relevance because loss of junctional Pg is a hallmark of arrhythmogenic cardiomyopathy.


Assuntos
Adesão Celular , Comunicação Celular , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desmogleína 2/metabolismo , Imunofluorescência , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Genótipo , Técnicas In Vitro , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Fenótipo , Fosforilação , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , gama Catenina/genética , gama Catenina/metabolismo
2.
Front Neuroanat ; 12: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29970992

RESUMO

The abducens nucleus (nVI) contains several functional cell groups: motoneurons of the singly-innervated twitch muscle fibers (SIF) and those of the multiply-innervated muscle fibers (MIF) of the lateral rectus muscle (LR), internuclear neurons (INTs) projecting to the contralateral oculomotor nucleus (nIII) and paramedian tract-neurons (PMT) that receive input from premotor neurons of the oculomotor system and project to the floccular region. In monkey, these cell populations can be delineated by their chemical signature. For correlative clinico-pathological studies the identification of the homologous cell groups in the human nVI are required. In this study, we plotted the distribution of these populations in monkey nVI by combined tract-tracing and immunohistochemical staining facilitating the identification of homologous cell groups in man. Paraffin sections of two Rhesus monkeys fixed with 4% paraformaldhehyde and immunostained with antibodies directed against choline acetyltransferase (ChAT) as marker enzyme for cholinergic neurons and chondroitin sulfate proteoglycan (CSPG) to detect perineuronal nets (PNs) revealed four neuron populations in nVI with different chemical signatures: ChAT-positive and CSPG-positive SIF motoneurons, ChAT-positive, but CSPG-negative MIF motoneurons, and ChAT-negative neurons with prominent PNs that were considered as INTs. This was confirmed by combined immunofluorescence labeling of cholera toxin subunit B (CTB) or wheat germ agglutinin (WGA) and ChAT or CSPG in nVI sections from cases with tracer injections into nIII. In the rostral part of nVI and at its medial border, populations of ChAT-negative groups with weak CSPG-staining, but with strong acetylcholinesterase (AChE) activity, were identified as PMT cell groups by correlating them with the location of anterograde tracer labeling from INTs in nIII. Applying ChAT- and CSPG-immunostaining as well as AChE staining to human brainstem sections four neuron groups with the same chemical signature as those in monkey could be identified in and around the nVI in human. In conclusion, the distribution of nVI neuron populations was identified in human based on findings in monkey utilizing their markers for cholinergic neurons and their different ensheathment by PNs of the extracellular matrix.

3.
J Comp Neurol ; 455(3): 341-52, 2003 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-12483686

RESUMO

The extracellular matrix of the brain contains large aggregates of chondroitin sulfate proteoglycans (CSPG), which form lattice-like cell coatings around distinct neuron populations and are termed perineuronal nets. The function of perineuronal nets is not fully understood, but they are often found around neurons containing the calcium-binding protein parvalbumin, suggesting a function in primarily highly active neurons. In the present paper the distribution of perineuronal nets was studied in two functional cell groups of the primate oculomotor system with well-known firing properties: 1) the saccadic omnipause neurons in the nucleus raphe interpositus (RIP) exhibit a high tonic firing rate, which is only interrupted during saccades; they are inhibitory and use glycine as a transmitter; and 2) premotor burst neurons for vertical saccades in the rostral interstitial nucleus of the medial longitudinal fascicle (RiMLF) fire with high-frequency bursts during saccades; they are excitatory and use glutamate and/or aspartate as a transmitter. In the macaque monkey, both cell populations were identified by their parvalbumin immunoreactivity and were studied for the presence of perineuronal nets using CSPG antibodies or lectin binding with Wisteria floribunda agglutinin. In addition, the expression of another calcium-binding protein, calretinin, was studied in both cell groups. Double- and triple-immunofluorescence methods revealed that both omnipause and burst neurons are selectively ensheathed with strongly labeled perineuronal nets. Calretinin was coexpressed in at least 70% of the saccadic burst neurons, but not in the omnipause neurons. Parallel staining of human tissue revealed strongly labeled perineuronal nets around the saccadic omnipause and burst neurons, in corresponding brainstem regions, which specifically highlighted these neurons within the poorly structured reticular formation. These findings support the hypothesis that perineuronal nets may provide a specialized microenvironment for highly active neurons to maintain their fast-spiking activity and are not related to the transmitter or the postsynaptic action of the ensheathed neurons.


Assuntos
Tronco Encefálico/citologia , Proteínas de Ligação ao Cálcio/análise , Proteoglicanas de Sulfatos de Condroitina/análise , Neurônios/química , Nervo Oculomotor/citologia , Animais , Tronco Encefálico/química , Calbindina 2 , Matriz Extracelular , Humanos , Imuno-Histoquímica , Macaca , Microscopia de Fluorescência , Nervo Oculomotor/química , Parvalbuminas/análise , Formação Reticular/química , Formação Reticular/citologia , Proteína G de Ligação ao Cálcio S100/análise
4.
Front Neuroanat ; 8: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574976

RESUMO

The oculomotor nucleus (nIII) contains the motoneurons of medial, inferior, and superior recti (MR, IR, and SR), inferior oblique (IO), and levator palpebrae (LP) muscles. The delineation of motoneuron subgroups for each muscle is well-known in monkey, but not in human. We studied the transmitter inputs to human nIII and the trochlear nucleus (nIV), which innervates the superior oblique muscle (SO), to outline individual motoneuron subgroups. Parallel series of sections from human brainstems were immunostained for different markers: choline acetyltransferase combined with glutamate decarboxylase (GAD), calretinin (CR) or glycine receptor. The cytoarchitecture was visualized with cresyl violet, Gallyas staining and expression of non-phosphorylated neurofilaments. Apart from nIV, seven subgroups were delineated in nIII: the central caudal nucleus (CCN), a dorsolateral (DL), dorsomedial (DM), central (CEN), and ventral (VEN) group, the nucleus of Perlia (NP) and the non-preganglionic centrally projecting Edinger-Westphal nucleus (EWcp). DL, VEN, NP, and EWcp were characterized by a strong supply of GAD-positive terminals, in contrast to DM, CEN, and nIV. CR-positive terminals and fibers were confined to CCN, CEN, and NP. Based on location and histochemistry of the motoneuron subgroups in monkey, CEN is considered as the SR and IO motoneurons, DL and VEN as the B- and A-group of MR motoneurons, respectively, and DM as IR motoneurons. A good correlation between monkey and man is seen for the CR input, which labels only motoneurons of eye muscles participating in upgaze (SR, IO, and LP). The CCN contained LP motoneurons, and nIV those of SO. This study provides a map of the individual subgroups of motoneurons in human nIII for the first time, and suggests that NP may contain upgaze motoneurons. Surprisingly, a strong GABAergic input to human MR motoneurons was discovered, which is not seen in monkey and may indicate a functional oculomotor specialization.

5.
J Comp Neurol ; 507(3): 1317-35, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18186030

RESUMO

The perioculomotor region contains several functional cell groups, including parasympathetic preganglionic neurons of the ciliary ganglion, motoneurons of multiply innervated muscle fibers (MIF) of extraocular muscles, and urocortin-positive neurons. In this study, midbrain sections of monkey and human were treated with antibodies against choline acetyltransferase (ChAT), cytochrome oxidase (CytOx), nonphosphorylated neurofilaments (NP-NF), chondroitin sulfate proteoglycan (CSPG), and urocortin (UCN) to identify them by their histochemical properties. To facilitate the comparison between species, a new nomenclature was introduced (see also May et al., 2007), which designates these perioculomotor cell populations (pIII) in terms of their function and histochemical properties. The name Edinger-Westphal nucleus (EW) is kept for the cytoarchitecturally defined cell group traditionally considered as the location of preganglionic neurons of the ciliary ganglion. In monkey, the EW contains ChAT-positive presumed preganglionic neurons, and is therefore termed EW(PG), but in contrast human EW consists of noncholinergic UCN-positive neurons, and is therefore termed EW(U). In human, the presumed preganglionic neurons were found dorsal to EW(U), as an inconspicuous group of ChAT- and CytOx-positive neurons. They were interspersed with prominent CSPG-positive cells, a pattern also present in monkey. For the first time, the MIF motoneurons could be identified around the medial aspect of the human oculomotor nucleus as a group of ChAT-positive neurons that lack CSPG-positive perineuronal nets. Moreover, the Perlia nucleus was found to share the histochemical properties of oculomotor twitch motoneurons. The present results form the basis for addressing the appropriate functional cell groups in correlative clinicopathological studies.


Assuntos
Fibras Autônomas Pré-Ganglionares/metabolismo , Fibras Colinérgicas/metabolismo , Mesencéfalo/citologia , Neurônios Motores/metabolismo , Sistema Nervoso Parassimpático/citologia , Animais , Colina O-Acetiltransferase/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Técnicas Imunoenzimáticas , Macaca , Mesencéfalo/metabolismo , Neurônios Motores/ultraestrutura , Proteínas de Neurofilamentos/metabolismo , Músculos Oculomotores/inervação , Sistema Nervoso Parassimpático/metabolismo , Terminologia como Assunto , Urocortinas/metabolismo
6.
Prog Brain Res ; 171: 13-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18718276

RESUMO

Motoneurons of the oculomotor nucleus subserving multiply innervated muscle fibres (MIF) receive different afferent inputs from the motoneurons subserving singly innervated muscle fibres (SIF). We asked whether MIF and SIF motoneurons have different neurotransmitter signalling expression profiles. Adult rhesus monkey extraocular muscles were injected with the retrograde tracer cholera toxin. Sections were then stained for various neurotransmitter-signalling markers. MIF motoneurons showed less glutamate receptor 4 (GluR4) and N-methyl-D-aspartate receptor 1 (NMDAR1) immunoreactivity, but showed similar amounts of glutamic acid decarboxylase (GAD) immunoreactive afferent terminals, compared to SIF motoneurons. This difference in excitatory neurotransmitter receptor expression may explain selective oculomotor deficits and allow development of selective pharmacotherapy in the future.


Assuntos
Macaca mulatta , Neurônios Motores/metabolismo , Músculos Oculomotores/inervação , Animais , Macaca mulatta/anatomia & histologia , Macaca mulatta/fisiologia , Neurônios Motores/citologia , Neurotransmissores/metabolismo , Músculos Oculomotores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa