Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 116(1): 49-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002255

RESUMO

BACKGROUND AND AIMS: Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. METHODS: Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. KEY RESULTS: Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. CONCLUSIONS: The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs.


Assuntos
Juglans/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Ar , Estações do Ano , Solo , Coloração e Rotulagem , Temperatura , Árvores/crescimento & desenvolvimento
2.
Ann Bot ; 113(3): 545-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24344139

RESUMO

BACKGROUND AND AIMS: Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on 'Nonpareil' almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates. METHODS: A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season. KEY RESULTS: Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments. CONCLUSIONS: Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate a more rapid progression through ontogenetic states.


Assuntos
Prunus/anatomia & histologia , Prunus/crescimento & desenvolvimento , Desidratação , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Cadeias de Markov , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Prunus/fisiologia , Estações do Ano , Estresse Fisiológico , Fatores de Tempo , Árvores
3.
Funct Plant Biol ; 42(3): 325-335, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480677

RESUMO

Axillary meristem fate patterns along shoots, also referred to as shoot structure, appear to be fairly consistent among trees within a genotype growing under similar conditions. Less is known about shoot structural plasticity following external manipulations, such as pruning. The aim of this study on almond (Prunus dulcis (Mill.)) shoots was to investigate how pruning severity affects the structure of 1-year-old shoots that grew after pruning (regrowth shoots), the 2-year-old portion of shoots that remained from the previous year's growth after pruning (pruned shoots), and whether regrowth shoots reiterate the structure of the original 1-year-old shoots before pruning. Three pruning severities were imposed and the structures along the different shoots were assessed by building hidden semi-Markov models of axillary meristem fates. The structures of regrowth and pruned shoots depended on pruning severity, but maintained some of the original shoot characteristics. Regrowth shoots developed more complex structures with severe pruning, but had simpler structures than original shoots indicating progressive simplification with tree age. Pruned shoot structures were affected by the severity of pruning, by the structure when the shoots were 1 year old, and probably by local competition among buds. Changes in structure due to pruning can be modelled and be predictable.

4.
Tree Physiol ; 31(7): 700-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21849590

RESUMO

In mature almond (Prunus dulcis) orchards, the majority of crop is borne on spurs (short, proleptic shoots) that can live for several years and can produce from one to five fruits. Previous research has led to the hypothesis that spur longevity is related to spur light exposure, cropping and age. However, limited quantitative data are available to substantiate these hypotheses. The objective of this study was to determine spur characteristics that were most highly correlated with spur productivity and longevity in mature, bearing almond trees. Previous year spur leaf area was strongly related to spur viability and flowering; the greater the leaf area in the previous year, the higher the probability of spur survival into the next year and the higher the probability for the spur to bear one or more flowers. Previous year bearing also appeared to influence viability and return bloom, especially in spurs with low leaf area. These results suggest that spur source-sink balance is basic to the life cycle of almond spurs. Furthermore, the results are consistent with the hypothesis that spurs are semi-autonomous organs with respect to carbohydrate balance for much of the growing season. Finally, this information provides general thresholds for maintaining spur viability and productivity that will be useful for developing and evaluating tree training systems and orchard management practices.


Assuntos
Frutas/crescimento & desenvolvimento , Prunus/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Luz Solar
5.
Ann Bot ; 99(2): 255-63, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17138580

RESUMO

BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.


Assuntos
Juglans/efeitos dos fármacos , Juglans/efeitos da radiação , Caulim/farmacologia , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Prunus/efeitos dos fármacos , Prunus/efeitos da radiação , Juglans/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Prunus/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa